Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Fish Biol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924061

RESUMEN

Seasonal migrations of marine fish between shallow summer feeding habitats and deep overwintering grounds are driven by fluctuations in the biotic and abiotic environment as well as by changes in the internal state. Ontogenetic shifts in physiology and metabolism affect the response to environmental drivers and may lead to changes in migration timing and propensity. In this study, we investigated the effect of temperature and body size on migration timing and depth distribution in acoustically tagged Atlantic cod, Gadus morhua, and saithe, Pollachius virens, during the period of seasonal migration from shallow summer habitats. The results from our study revealed a wide range of horizontal and vertical distribution of age 1 and 2 G. morhua within the fjord. Larger G. morhua inhabited deeper, cooler waters than smaller juveniles, likely reflecting size-dependent thermal preferences and predation pressure. Conversely, juvenile P. virens occupied primarily shallow waters close to land. The variation in depth distribution of G. morhua was mainly explained by body size and not, against our predictions, by water temperature. Conversely, the dispersal from the in-fjord habitats occurred when water temperatures were high, suggesting that seasonal temperature fluctuations can trigger the migration timing of P. virens and larger G. morhua from summer habitats. Partial migration of small juvenile G. morhua from in-fjord foraging grounds, likely influenced by individual body condition, suggested seasonal migration as a flexible strategy that individuals may use to reduce predation and energetic expenditure. Predation mortality rates of tagged juveniles were higher than previously suggested and are the first robust predation mortality rates for juvenile G. morhua and P. virens estimated based on acoustic transmitters with acidity sensors. The results have relevance for climate-informed marine spatial planning as under the scenario of increasing ocean temperatures, increasing summer temperatures may reduce the juveniles' resource utilization in the shallow summer nurseries, resulting in lower growth rates, increased predation pressure, and lower chances of juvenile winter survival.

2.
PLoS One ; 18(10): e0292495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37792752

RESUMEN

Atlantic cod is a keystone species that remains among the most economically important demersal fish in the North Atlantic. Throughout its distribution range, Atlantic cod is composed of populations with varying environmental preferences and migratory propensities. This life-history variation is likely to have contributed to the niche width and large population sizes of Atlantic cod, and its relative resilience to environmental change and exploitation. The Icelandic cod stock is currently managed as a single unit, but early research indicates population variation by depth and temperature and distinct offshore and inshore spawning components. Pelagic 0-group juveniles from different spawning grounds coexist in nursery areas around Iceland, but their genetic composition or habitat partitioning had not been examined post benthic settlement. In the current study we examine the genetic composition of Atlantic cod juvenile aggregations at nearshore nursery grounds in NW-Iceland and report distinct segregation by the depth of offshore and inshore juvenile cod. The physiological mechanism of this segregation is not known, but the pattern demonstrates the need to consider population structure at nursery grounds in the application of marine spatial planning and other area-based conservation tools.


Asunto(s)
Gadus morhua , Rasgos de la Historia de Vida , Animales , Gadus morhua/genética , Peces , Ecosistema , Densidad de Población , Océano Atlántico
3.
Chemistry ; 18(29): 8925-8, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22706791

RESUMEN

The future's wheel: A new class of wheels, based on subphthalocyanine fragments, for future incorporation in functional nanovehicles is reported (see figure). The syntheses of a symmetric wheel, a nitrogen-tagged wheel, and their ethynyl-bridged homodimers are presented. Theoretical calculations and STM imaging demonstrate the advantage of a bowl-shaped structure and the efficiency of the tag for STM imaging.


Asunto(s)
Boro/química , Indoles/química , Indoles/síntesis química , Compuestos de Boro , Isoindoles , Microscopía de Túnel de Rastreo , Modelos Moleculares , Estructura Molecular
4.
ACS Nano ; 9(8): 8394-400, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26158314

RESUMEN

A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

5.
Chem Commun (Camb) ; 51(63): 12621-4, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26158490

RESUMEN

Novel surface coordination nanostructures based on cyanosexiphenyl molecules are assembled on a gold surface and investigated by scanning tunneling microscopy and density functional theory. Their formation can be tuned by varying the surface temperature during deposition. Diffusing gold adatoms act as coordination centers for the cyano groups present on one end of the nonsymmetrical molecules.

6.
ACS Nano ; 7(1): 191-7, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23199300

RESUMEN

For the development of nanoscale devices, the manipulation of single atoms and molecules by scanning tunneling microscopy is a well-established experimental technique. However, for the construction of larger and higher order structures, it is important to move not only one adsorbate but also several at the same time. Additionally, a major issue in standard manipulation experiments is the strong mechanical interaction of the tip apex and the adsorbate, which can damage the system under investigation. Here, we present a purely electronic excitation method for the controlled movement of a weakly interacting assembly of a few molecules. By applying voltage pulses, this supramolecular nanostructure is moved in a controlled manner without losing its collective integrity. Depending on the polarity and location of the applied voltage, the movement can be driven in predefined directions. Our gentle purely electronic approach for the controlled manipulation of nanostructures opens new ways to construct molecular devices.


Asunto(s)
Micromanipulación/métodos , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Campos Electromagnéticos , Ensayo de Materiales , Movimiento (Física) , Nanoestructuras/ultraestructura , Dosis de Radiación
7.
J Phys Condens Matter ; 24(40): 404001, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22968915

RESUMEN

A new class of double-wheel molecules is manipulated on a Au(111) surface by the tip of a scanning tunneling microscope (STM) at low temperature. The double-wheel molecule consists of two subphthalocyanine wheels connected by a central rotation carbon axis. Each of the subphthalocyanine wheels has a nitrogen tag to monitor its intramolecular rolling during an STM manipulation sequence. The position of the tag can be followed by STM, allowing us to distinguish between the different lateral movements of the molecule on the surface when manipulated by the STM tip.


Asunto(s)
Oro/química , Indoles/química , Micromanipulación/métodos , Microscopía de Túnel de Rastreo/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Isoindoles , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA