Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065970

RESUMEN

Growing evidence suggests that respiratory frequency (fR) is a valid marker of effort during high-intensity exercise, including sports of an intermittent nature, like soccer. However, very few attempts have been made so far to monitor fR in soccer with unobtrusive devices. This study assessed the validity of three strain-based commercial wearable devices measuring fR during soccer-specific movements. On two separate visits to the soccer pitch, 15 players performed a 30 min validation protocol wearing either a ComfTech® (CT) vest or a BioharnessTM (BH) 3.0 strap and a Tyme WearTM (TW) vest. fR was extracted from the respiratory waveform of the three commercial devices with custom-made algorithms and compared with that recorded with a reference face mask. The fR time course of the commercial devices generally resembled that of the reference system. The mean absolute percentage error was, on average, 7.03% for CT, 8.65% for TW, and 14.60% for BH for the breath-by-breath comparison and 1.85% for CT, 3.27% for TW, and 7.30% for BH when comparison with the reference system was made in 30 s windows. Despite the challenging measurement scenario, our findings show that some of the currently available wearable sensors are indeed suitable to unobtrusively measure fR in soccer.


Asunto(s)
Respiración , Fútbol , Dispositivos Electrónicos Vestibles , Humanos , Fútbol/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Masculino , Adulto , Adulto Joven , Algoritmos , Frecuencia Respiratoria/fisiología
2.
Eur J Appl Physiol ; 123(2): 215-242, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36326866

RESUMEN

The lack of a testable model explaining how ventilation is regulated in different exercise conditions has been repeatedly acknowledged in the field of exercise physiology. Yet, this issue contrasts with the abundance of insightful findings produced over the last century and calls for the adoption of new integrative perspectives. In this review, we provide a methodological approach supporting the importance of producing a set of evidence by evaluating different studies together-especially those conducted in 'real' exercise conditions-instead of single studies separately. We show how the collective assessment of findings from three domains and three levels of observation support the development of a simple model of ventilatory control which proves to be effective in different exercise protocols, populations and experimental interventions. The main feature of the model is the differential control of respiratory frequency (fR) and tidal volume (VT); fR is primarily modulated by central command (especially during high-intensity exercise) and muscle afferent feedback (especially during moderate exercise) whereas VT by metabolic inputs. Furthermore, VT appears to be fine-tuned based on fR levels to match alveolar ventilation with metabolic requirements in different intensity domains, and even at a breath-by-breath level. This model reconciles the classical neuro-humoral theory with apparently contrasting findings by leveraging on the emerging control properties of the behavioural (i.e. fR) and metabolic (i.e. VT) components of minute ventilation. The integrative approach presented is expected to help in the design and interpretation of future studies on the control of fR and VT during exercise.


Asunto(s)
Ejercicio Físico , Frecuencia Respiratoria , Humanos , Volumen de Ventilación Pulmonar , Ejercicio Físico/fisiología , Respiración , Pulmón
3.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336520

RESUMEN

Music is an invaluable tool to improve affective valence during exercise, with the potential contribution of a mechanism called rhythmic entrainment. However, several methodological limitations impair our current understanding of the effect of music on relevant psychophysiological responses to exercise, including breathing variables. This study presents conceptual, methodological, and operational insight favoring the investigation of the effect of music on breathing during exercise. Three tools were developed for the quantification of the presence, degree, and magnitude of music-locomotor, locomotor-breathing, and music-breathing entrainment. The occurrence of entrainment was assessed during 30 min of moderate cycling exercise performed either when listening to music or not, and was complemented by the recording of relevant psychophysiological and mechanical variables. Respiratory frequency and expiratory time were among the physiological variables that were affected to a greater extent by music during exercise, and a significant (p < 0.05) music-breathing entrainment was found in all 12 participants. These findings suggest the importance of evaluating the effect of music on breathing responses to exercise, with potential implications for exercise prescription and adherence, and for the development of wearable devices simultaneously measuring music, locomotor, and breathing signals.


Asunto(s)
Música , Percepción Auditiva , Ejercicio Físico/fisiología , Terapia por Ejercicio , Humanos , Música/psicología , Respiración
4.
Eur J Nutr ; 60(6): 3437-3447, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33635408

RESUMEN

PURPOSE: Exercise plays an important role in preventing and treating postprandial dysmetabolism. We investigated the postprandial metabolic responses to a standard lunch when a session of aerobic exercise is performed in the early postprandial phase or divided between the pre- and postprandial period. METHODS: Nine healthy volunteers consumed a standardised mixed lunch and rested for the following 3 h (Con) or performed 40 min of cycling at 65% V̇O2max after lunch (CPPEx), or two 20-min sessions, one before (SplitEx1) and the other after lunch (SplitEx2), at the same intensity. RESULTS: At 1-h post-lunch, a significant reduction (P < 0.001) in glycaemia was observed for CPPEx (- 25 ± 10%) and SplitEx (- 34 ± 7%) compared to Con. Yet, a post-exercise rebound lessened the exercise effect on the glycaemic area under the curve (AUC) at 2 and 3 h. At 1 h, a significant reduction (P < 0.009) in plasma insulin (SplitEx - 53 ± 31%; CCPEx - 48 ± 20%) and C-peptide (SplitEx - 57 ± 20%; CCPEx - 47 ± 24%) was observed compared to Con. Glucose-dependent insulinotropic polypeptide (GIP) increased after the meal, without differences between conditions. Compared with SplitEx1, cortisol response was attenuated during SplitEx2 and CPPEx. At 3 hours, triglyceride AUC was significantly higher (P = 0.039) in SplitEx compared to Con (+ 19 ± 8%). CONCLUSION: Forty minutes of postprandial exercise or 20 min of pre- and postprandial exercise are both effective at attenuating the glycaemic and insulinaemic response to a mixed lunch, while a higher lipaemia was found in the pre- and postprandrial exercise condition.


Asunto(s)
Almuerzo , Periodo Posprandial , Glucemia , Péptido C , Estudios Cruzados , Ejercicio Físico , Humanos , Insulina , Masculino
5.
Eur J Appl Physiol ; 121(2): 583-596, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33165638

RESUMEN

PURPOSE: Pedalling cadence influences respiratory frequency (fR) during exercise, with group III/IV muscle afferents possibly mediating its effect. However, it is unclear how exercise intensity affects the link between cadence and fR. We aimed to test the hypothesis that the effect of cadence on fR is moderated by exercise intensity, with interest in the underlying mechanisms. METHODS: Ten male cyclists performed a preliminary ramp incremental test and three sinusoidal experimental tests on separate visits. The experimental tests consisted of 16 min of sinusoidal variations in cadence between 115 and 55 rpm (sinusoidal period of 4 min) performed during passive exercise (PE), moderate exercise (ME) and heavy exercise (HE). The amplitude (A) and phase lag (φ) of the dependent variables were calculated. RESULTS: During PE, fR changed in proportion to variations in cadence (r = 0.85, P < 0.001; A = 3.9 ± 1.4 breaths·min-1; φ = - 5.3 ± 13.9 degrees). Conversely, the effect of cadence on fR was reduced during ME (r = 0.73, P < 0.001; A = 2.6 ± 1.3 breaths·min-1; φ = - 25.4 ± 26.3 degrees) and even more reduced during HE (r = 0.26, P < 0.001; A = 1.8 ± 1.0 breaths·min-1; φ = - 70.1 ± 44.5 degrees). No entrainment was found in any of the sinusoidal tests. CONCLUSION: The effect of pedalling cadence on fR is moderated by exercise intensity-it decreases with the increase in work rate-and seems to be mediated primarily by group III/IV muscle afferents, at least during passive exercise.


Asunto(s)
Ciclismo/fisiología , Ejercicio Físico/fisiología , Frecuencia Respiratoria/fisiología , Adulto , Prueba de Esfuerzo/métodos , Pie/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Adulto Joven
6.
Int J Legal Med ; 134(6): 2319-2334, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32681208

RESUMEN

Ageing of the global population represents a challenge for national healthcare systems and healthcare professionals, including medico-legal experts, who assess personal damage in an increasing number of older people. Personal damage evaluation in older people is complex, and the scarcity of evidence is hindering the development of formal guidelines on the subject. The main objectives of the first multidisciplinary Consensus Conference on Medico-Legal Assessment of Personal Damage in Older People were to increase knowledge on the subject and establish standard procedures in this field. The conference, organized according to the guidelines issued by the Italian National Institute of Health (ISS), was held in Bologna (Italy) on June 8, 2019 with the support of national scientific societies, professional organizations, and stakeholders. The Scientific Technical Committee prepared 16 questions on 4 thematic areas: (1) differences in injury outcomes in older people compared to younger people and their relevance in personal damage assessment; (2) pre-existing status reconstruction and evaluation; (3) medico-legal examination procedures; (4) multidimensional assessment and scales. The Scientific Secretariat reviewed relevant literature and documents, rated their quality, and summarized evidence. During conference plenary public sessions, 4 pairs of experts reported on each thematic area. After the last session, a multidisciplinary Jury Panel (15 members) drafted the consensus statements. The present report describes Conference methods and results, including a summary of evidence supporting each statement, and areas requiring further investigation. The methodological recommendations issued during the Conference may be useful in several contexts of damage assessment, or to other medico-legal evaluation fields.


Asunto(s)
Lesiones Accidentales , Envejecimiento , Medicina Legal , Anciano , Anciano de 80 o más Años , Estado Funcional , Evaluación Geriátrica , Estado de Salud , Humanos , Italia , Responsabilidad Legal
7.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182463

RESUMEN

Respiratory rate is a fundamental vital sign that is sensitive to different pathological conditions (e.g., adverse cardiac events, pneumonia, and clinical deterioration) and stressors, including emotional stress, cognitive load, heat, cold, physical effort, and exercise-induced fatigue. The sensitivity of respiratory rate to these conditions is superior compared to that of most of the other vital signs, and the abundance of suitable technological solutions measuring respiratory rate has important implications for healthcare, occupational settings, and sport. However, respiratory rate is still too often not routinely monitored in these fields of use. This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services. We have identified thirteen monitoring goals where the use of the respiratory rate is invaluable, and for each of them we have described suitable sensors and techniques to monitor respiratory rate in specific measurement scenarios. We have also provided a physiological rationale corroborating the importance of respiratory rate monitoring and an original multidisciplinary framework for the development of respiratory monitoring services. This review is expected to advance the field of respiratory monitoring and favor synergies between different disciplines to accomplish this goal.


Asunto(s)
Monitoreo Fisiológico , Frecuencia Respiratoria , Atención a la Salud , Ejercicio Físico , Humanos , Medicina Deportiva , Signos Vitales
8.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795595

RESUMEN

There is an ever-growing demand for measuring respiratory variables during a variety of applications, including monitoring in clinical and occupational settings, and during sporting activities and exercise. Special attention is devoted to the monitoring of respiratory rate because it is a vital sign, which responds to a variety of stressors. There are different methods for measuring respiratory rate, which can be classed as contact-based or contactless. The present paper provides an overview of the currently available contact-based methods for measuring respiratory rate. For these methods, the sensing element (or part of the instrument containing it) is attached to the subject's body. Methods based upon the recording of respiratory airflow, sounds, air temperature, air humidity, air components, chest wall movements, and modulation of the cardiac activity are presented. Working principles, metrological characteristics, and applications in the respiratory monitoring field are presented to explore potential development and applicability for each method.


Asunto(s)
Monitoreo Fisiológico/métodos , Respiración , Frecuencia Respiratoria/fisiología , Ejercicio Físico/fisiología , Humanos , Pared Torácica/fisiología
9.
Exp Physiol ; 102(8): 934-949, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28560751

RESUMEN

NEW FINDINGS: What is the central question of this study? By manipulating recovery intensity and exercise duration during high-intensity interval training (HIIT), we tested the hypothesis that fast inputs contribute more than metabolic stimuli to respiratory frequency (fR ) regulation. What is the main finding and its importance? Respiratory frequency, but not tidal volume, responded rapidly and in proportion to changes in workload during HIIT, and was dissociated from some markers of metabolic stimuli in response to both experimental manipulations, suggesting that fast inputs contribute more than metabolic stimuli to fR regulation. Differentiating between fR and tidal volume may help to unravel the mechanisms underlying exercise hyperpnoea. Given that respiratory frequency (fR ) has been proposed as a good marker of physical effort, furthering the understanding of how fR is regulated during exercise is of great importance. We manipulated recovery intensity and exercise duration during high-intensity interval training (HIIT) to test the hypothesis that fast inputs (including central command) contribute more than metabolic stimuli to fR regulation. Seven male cyclists performed an incremental test, a 10 and a 20 min continuous time trial (TT) as preliminary tests. Subsequently, recovery intensity and exercise duration were manipulated during HIIT (30 s work and 30 s active recovery) by performing four 10 min and one 20 min trial (recovery intensities of 85, 70, 55 and 30% of the 10 min TT mean workload; and 85% of the 20 min TT mean workload). The work intensity of the HIIT sessions was self-paced by participants to achieve the best performance possible. When manipulating recovery intensity, fR , but not tidal volume (VT ), showed a fast response to the alternation of the work and recovery phases, proportional to the extent of workload variations. No association between fR and gas exchange responses was observed. When manipulating exercise duration, fR and rating of perceived exertion were dissociated from VT , carbon dioxide output and oxygen uptake responses. Overall, the rating of perceived exertion was strongly correlated with fR (r = 0.87; P < 0.001) but not with VT . These findings may reveal a differential control of fR and VT during HIIT, with fast inputs appearing to contribute more than metabolic stimuli to fR regulation. Differentiating between fR and VT may help to unravel the mechanisms underlying exercise hyperpnoea.


Asunto(s)
Ejercicio Físico/fisiología , Frecuencia Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología , Adaptación Fisiológica/fisiología , Adulto , Ciclismo/fisiología , Entrenamiento de Intervalos de Alta Intensidad/métodos , Humanos , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Adulto Joven
10.
J Sports Sci ; 34(13): 1199-206, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26503587

RESUMEN

In order to provide further insight into the link between respiratory frequency (fR) and the rating of perceived exertion (RPE), the present study investigated the effect of exercise duration on perceptual and physiological responses during self-paced exercise. Nine well-trained competitive male cyclists (23 ± 3 years) performed a preliminary incremental ramp test and three randomised self-paced time trials (TTs) differing in exercise duration (10, 20 and 30 min). Both RPE and fR increased almost linearly over time, with a less-pronounced rate of increase when absolute exercise duration increased. However, when values were expressed against relative exercise duration, no between-trial differences were found in either RPE or fR. Conversely, between-trial differences were observed for minute ventilation (.VE), .VO2 and heart rate (HR), when values were expressed against relative exercise duration. Unlike the relationship between RPE and both .VE and HR, the relationship between RPE and fR was not affected by exercise duration. In conclusion, fR, but not .VE, HR or [.VO2, shows a strong relationship to RPE and a similar time course, irrespective of exercise duration. These findings indicate that fR is the best correlate of RPE during self-paced exercise, at least among the parameters and for the range of durations herein investigated.


Asunto(s)
Rendimiento Atlético/fisiología , Ciclismo/fisiología , Esfuerzo Físico/fisiología , Frecuencia Respiratoria , Adulto , Atletas , Frecuencia Cardíaca , Humanos , Masculino , Consumo de Oxígeno , Factores de Tiempo , Adulto Joven
12.
Nutrients ; 16(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674861

RESUMEN

The detrimental impacts of postprandial hyperglycemia on health are a critical concern, and exercise is recognized a pivotal tool in enhancing glycemic control after a meal. However, current exercise recommendations for managing postprandial glucose levels remain fairly broad and require deeper clarification. This review examines the existing literature aiming to offer a comprehensive guide for exercise prescription to optimize postprandial glycemic management. Specifically, it considers various exercise parameters (i.e., exercise timing, type, intensity, volume, pattern) for crafting exercise prescriptions. Findings predominantly indicate that moderate-intensity exercise initiated shortly after meals may substantially improve glucose response to a meal in healthy individuals and those with type 2 diabetes. Moreover, incorporating short activity breaks throughout the exercise session may provide additional benefits for reducing glucose response.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ejercicio Físico , Control Glucémico , Periodo Posprandial , Humanos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico/fisiología , Terapia por Ejercicio/métodos , Control Glucémico/métodos , Hiperglucemia/prevención & control
13.
Biosensors (Basel) ; 13(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979581

RESUMEN

Given the importance of respiratory frequency (fR) as a valid marker of physical effort, there is a growing interest in developing wearable devices measuring fR in applied exercise settings. Biosensors measuring chest wall movements are attracting attention as they can be integrated into textiles, but their susceptibility to motion artefacts may limit their use in some sporting activities. Hence, there is a need to exploit sensors with signals minimally affected by motion artefacts. We present the design and testing of a smart facemask embedding a temperature biosensor for fR monitoring during cycling exercise. After laboratory bench tests, the proposed solution was tested on cyclists during a ramp incremental frequency test (RIFT) and high-intensity interval training (HIIT), both indoors and outdoors. A reference flowmeter was used to validate the fR extracted from the temperature respiratory signal. The smart facemask showed good performance, both at a breath-by-breath level (MAPE = 2.56% and 1.64% during RIFT and HIIT, respectively) and on 30 s average fR values (MAPE = 0.37% and 0.23% during RIFT and HIIT, respectively). Both accuracy and precision (MOD ± LOAs) were generally superior to those of other devices validated during exercise. These findings have important implications for exercise testing and management in different populations.


Asunto(s)
Ejercicio Físico , Máscaras , Frecuencia Respiratoria , Respiración , Monitoreo Fisiológico
14.
Front Physiol ; 14: 1226421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593234

RESUMEN

Purpose: Growing evidence suggests that respiratory frequency (f R) is a marker of physical effort and a variable sensitive to changes in exercise tolerance. The comparison between arm+leg cycling (Arm+leg) and leg cycling (Leg) has the potential to further test this notion because a greater exercise tolerance is expected in the Arm+leg modality. We systematically compared Arm+leg vs. Leg using different performance tests. Methods: Twelve males underwent six performance tests in separate, randomized visits. Three tests were performed in each of the two exercise modalities, i.e. an incremental test and two time-to-exhaustion (TTE) tests performed at 90% or 75% of the peak power output reached in the Leg incremental test (PPOLeg). Exercise tolerance, perceived exertion, and cardiorespiratory variables were recorded during all the tests. Results: A greater exercise tolerance (p < 0.001) was found for Arm+leg in the incremental test (337 ± 32 W vs. 292 ± 28 W), in the TTE test at 90% of PPOLeg (638 ± 154 s vs. 307 ± 67 s), and in the TTE test at 75% of PPOLeg (1,675 ± 525 s vs. 880 ± 363 s). Unlike V˙O2 and heart rate, both f R and minute ventilation were lower (p < 0.003) at isotime in all the Arm+leg tests vs. Leg tests. Furthermore, a lower perceived exertion was observed in the Arm+leg tests, especially during the TTE tests (p < 0.001). Conclusion: Minute ventilation, f R and perceived exertion are sensitive to the improvements in exercise tolerance observed when comparing Arm+leg vs. Leg, unlike V˙O2 and heart rate.

15.
Biosensors (Basel) ; 13(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37367002

RESUMEN

Emerging evidence suggests that respiratory frequency (fR) is a valid marker of physical effort. This has stimulated interest in developing devices that allow athletes and exercise practitioners to monitor this vital sign. The numerous technical challenges posed by breathing monitoring in sporting scenarios (e.g., motion artifacts) require careful consideration of the variety of sensors potentially suitable for this purpose. Despite being less prone to motion artifacts than other sensors (e.g., strain sensors), microphone sensors have received limited attention so far. This paper proposes the use of a microphone embedded in a facemask for estimating fR from breath sounds during walking and running. fR was estimated in the time domain as the time elapsed between consecutive exhalation events retrieved from breathing sounds every 30 s. Data were collected from ten healthy subjects (both males and females) at rest and during walking (at 3 km/h and 6 km/h) and running (at 9 km/h and 12 km/h) activities. The reference respiratory signal was recorded with an orifice flowmeter. The mean absolute error (MAE), the mean of differences (MOD), and the limits of agreements (LOAs) were computed separately for each condition. Relatively good agreement was found between the proposed system and the reference system, with MAE and MOD values increasing with the increase in exercise intensity and ambient noise up to a maximum of 3.8 bpm (breaths per minute) and -2.0 bpm, respectively, during running at 12 km/h. When considering all the conditions together, we found an MAE of 1.7 bpm and an MOD ± LOAs of -0.24 ± 5.07 bpm. These findings suggest that microphone sensors can be considered among the suitable options for estimating fR during exercise.


Asunto(s)
Frecuencia Respiratoria , Carrera , Masculino , Femenino , Humanos , Ruidos Respiratorios , Respiración , Caminata
17.
Nutrients ; 14(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35268055

RESUMEN

We evaluated the effect of postprandial walking on the post-meal glycemic response after meals with different characteristics. Twenty-one healthy young volunteers participated in one of two randomized repeated measures studies. Study 1 (10 participants) assessed the effects of 30 min of brisk walking after meals with different carbohydrate (CHO) content (0.75 or 1.5 g of CHO per kg/body weight). Study 2 (11 participants) evaluated the effects of 30 min of brisk walking after consuming a mixed meal or a CHO drink matched for absolute CHO content (75 g). Postprandial brisk walking substantially reduced (p < 0.009) the glucose peak in both studies, with no significant differences across conditions. When evaluating the glycemic response throughout the two hours post-meal, postprandial walking was more effective after consuming a lower CHO content (Study 1), and similarly effective after a mixed meal or a CHO drink (Study 2), although higher glucose values were observed when consuming the CHO drink. Our findings show that a 30 min postprandial brisk walking session improves the glycemic response after meals with different CHO content and macronutrient composition, with implications for postprandial exercise prescription in daily life scenarios.


Asunto(s)
Glucosa , Caminata , Glucemia , Humanos , Comidas , Periodo Posprandial/fisiología , Caminata/fisiología
18.
Int J Sports Physiol Perform ; 17(4): 507-514, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247874

RESUMEN

Training load (TL) is a widely used concept in training prescription and monitoring and is also recognized as as an important tool for avoiding athlete injury, illness, and overtraining. With the widespread adoption of wearable devices, TL metrics are used increasingly by researchers and practitioners worldwide. Conceptually, TL was proposed as a means to quantify a dose of training and used to predict its resulting training effect. However, TL has never been validated as a measure of training dose, and there is a risk that fundamental problems related to its calculation are preventing advances in training prescription and monitoring. Specifically, we highlight recent studies from our research groups where we compare the acute performance decrement measured following a session with its TL metrics. These studies suggest that most TL metrics are not consistent with their notional training dose and that the exercise duration confounds their calculation. These studies also show that total work done is not an appropriate way to compare training interventions that differ in duration and intensity. We encourage scientists and practitioners to critically evaluate the validity of current TL metrics and suggest that new TL metrics need to be developed.


Asunto(s)
Traumatismos en Atletas , Dispositivos Electrónicos Vestibles , Traumatismos en Atletas/prevención & control , Humanos , Esfuerzo Físico
19.
Artículo en Inglés | MEDLINE | ID: mdl-36612575

RESUMEN

We evaluated the effects of different exercise types suitable for a home/work setting on the postprandial glucose response. Twenty-three healthy, active, young individuals performed one of two studies (12 in Study 1 and 11 in Study 2), with four randomized protocols each. After a meal high in carbohydrate content (1 g of carbohydrate per kg of body weight), in Study 1, participants performed 30 min of either walking (WALK), bench stepping exercise (STEP) or isometric wall squat (SQUAT); in Study 2, participants performed 30 min of either walking (WALK), neuromuscular electrical stimulation alone (P_NMES) or superimposed on voluntary muscle contraction (VC_NMES). In both studies, participants performed a prolonged sitting condition (CON) that was compared to the exercise sessions. In Study 1, WALK and STEP significantly reduced the glucose peak compared to CON (p < 0.011). In Study 2, the peak was significantly reduced in WALK compared to CON, P_NMES and VC_NMES (p < 0.011) and in VC_NMES compared to CON and P_NMES (p < 0.011). A significant reduction of 3 h glucose iAUC was found for WALK and VC_NMES compared to CON and P_NMES (p < 0.033). In conclusion, WALK is the most effective strategy for improving the postprandial glycemic response. However, STEP and VC_NMES can also be used for reducing postprandial glycemia.


Asunto(s)
Contracción Muscular , Caminata , Humanos , Caminata/fisiología , Glucemia , Postura , Glucosa , Periodo Posprandial/fisiología
20.
J Physiol ; 594(24): 7169-7170, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976397
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA