RESUMEN
Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of ß-lactamases. The early ß-lactamase inhibitors (BLIs) are characterized by spectra limited to class A ß-lactamases and ineffective against carbapenemases and most extended spectrum ß-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.
Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Inhibidores de beta-Lactamasas , beta-Lactamasas , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Proteínas Bacterianas , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Meropenem/farmacología , Meropenem/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimologíaRESUMEN
There are increasing reports of carbapenem-resistant Enterobacterales (CRE) that test as cefepime-susceptible (S) or susceptible-dose dependent (SDD). However, there are no data to compare the cefepime testing performance of BD Phoenix automated susceptibility system (BD Phoenix) and disk diffusion (DD) relative to reference broth microdilution (BMD) against carbapenemase-producing (CPblaKPC-CRE) and non-producing (non-CP CRE) isolates. Cefepime susceptibility results were interpreted according to CLSI M100Ed32. Essential agreement (EA), categorical agreement (CA), minor errors (miEs), major errors (MEs), and very major errors (VMEs) were calculated for BD Phoenix (NMIC-306 Gram-negative panel) and DD relative to BMD. Correlates were also analyzed by the error rate-bounded method. EA and CA for CPblaKPC-CRE isolates (n = 64) were <90% with BD Phoenix while among non-CP CRE isolates (n = 58), EA and CA were 96.6%, and 79.3%, respectively. CA was <90% with DD for both cohorts. No ME or VME was observed for either isolate cohort; however, miEs were >10% for CPblaKPC-CRE and non-CP CRE with BD Phoenix and DD tests. For error rate-bounded method, miEs were <40% for IHigh + 1 to ILow - 1 ranges for CPblaKPC-CRE and non-CP CRE with BD Phoenix. Regarding disk diffusion, miEs were unacceptable for all MIC ranges among CPblaKPC-CRE. For non-CP CRE isolates, only IHigh + 1 to ILow - 1 range was acceptable at 37.2%. Using this challenge set of genotypic-phenotypic discordant CRE, the BD Phoenix MICs and DD susceptibility results trended higher (toward SDD and resistant phenotypes) relative to reference BMD results yielding lower CA. These results were more prominent among CPblaKPC-CRE than non-CP CRE.
Asunto(s)
Antibacterianos , Enterobacteriaceae Resistentes a los Carbapenémicos , Cefepima , Pruebas de Sensibilidad Microbiana , Cefepima/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Humanos , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco/métodos , Infecciones por Enterobacteriaceae/microbiología , Cefalosporinas/farmacologíaRESUMEN
Empiric antibiotics may affect bacterial pathogen recovery using conventional culture methods (CCMs), while PCR-based diagnostics are likely less affected. Herein, we conducted an in vitro study of bronchoalveolar lavage fluid (BAL) inoculated with bacteria and clinically relevant antibiotic concentrations to compare the recovery between the BioFire FILMARRAY Pneumonia Panel (Pn Panel) and CCMs. Remnant clinical BAL specimens were inoculated to ~105 cfu/mL using 12 clinical isolates. Isolates consisted of one wild-type (WT) and one or more resistant strains of: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Piperacillin-tazobactam, cefepime, meropenem, levofloxacin, or vancomycin was added to achieve pulmonary epithelial lining fluid peak and trough concentrations. Post-exposure cfu/mL was quantified by CCMs and simultaneously tested by the PN Panel for identification and semi-quantitative genetic copies/mL. CCM results were categorized as significant growth (SG) (≥1 × 104), no significant growth (NSG) (≥1 × 103, <1 × 104), or no growth (NG) (<1 × 103). The PN Panel accurately identified all isolates, resistance genes, and reported ≥106 genetic copies/mL regardless of antibiotic exposure. The CCM also identified all S. aureus strains exposed to vancomycin. For WT Gram-negative isolates exposed to antibiotics, SG, NSG, and NG were observed in 7/52 (13%), 18/52 (35%), and 27/52 (52%) of CCM experiments, respectively. For resistant Gram-negatives isolates, SG, NSG, and NG were observed in 62/88 (70%), 17/88 (19%), and 9/88 (10%), respectively. These in vitro data demonstrate that the PN Panel is able to identify Gram-negative pathogens in the presence of clinically significant antibiotic concentrations when CCM may not.
Asunto(s)
Antibacterianos , Neumonía , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vancomicina/farmacología , Líquido del Lavado Bronquioalveolar , Staphylococcus aureus , Bacterias Gramnegativas , Bacterias , Neumonía/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Farmacorresistencia BacterianaRESUMEN
OBJECTIVES: To determine the in vitro activity of cefiderocol in a global collection of carbapenem-resistant Pseudomonas aeruginosa including >200 carbapenemase-producing isolates. METHODS: Isolates (nâ=â806) from the ERACE-PA Surveillance Program were assessed. Broth microdilution MICs were determined for cefiderocol (iron-depleted CAMHB) and comparators (CAMHB). Susceptibility was interpreted by CLSI and EUCAST breakpoints and reported as percent of isolates. The MIC distribution of cefiderocol in the entire cohort and by carbapenemase status was assessed. RESULTS: In the entire cohort, cefiderocol was the most active agent (CLSI 98% susceptible; EUCAST 95% susceptible; MIC50/90, 0.25/2 mg/L). Amikacin (urinary only breakpoint) was the second most active, with 70% of isolates testing as susceptible. The percentage of isolates susceptible to all other agents was low (<50%) including meropenem/vaborbactam, imipenem/relebactam, piperacillin/tazobactam and levofloxacin. Cefiderocol maintained significant activity against the most commonly encountered carbapenemases including VIM- (CLSI 97% susceptible; EUCAST 92% susceptible) and GES (CLSI 100% susceptible; EUCAST 97% susceptible)-harbouring isolates. The cefiderocol MIC distribution was similar regardless of carbapenemase status, with MIC50/90 values of 0.5/4 mg/L, 0.5/2 mg/L and 0.25/1 mg/L for MBL, serine carbapenemase and molecular carbapenemase-negative isolates, respectively. CONCLUSIONS: Cefiderocol displayed potent in vitro activity in this global cohort of carbapenem-resistant P. aeruginosa including >200 carbapenemase-harbouring isolates. Cefiderocol was highly active against MBL-producing isolates, where treatment options are limited. These data can help guide empirical therapy guidelines based on local prevalence of carbapenemase-producing P. aeruginosa or in response to rapid molecular diagnostics.
Asunto(s)
Proteínas Bacterianas , Cefiderocol , Pseudomonas aeruginosa , beta-Lactamasas , Humanos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , CefalosporinasRESUMEN
OBJECTIVES: To evaluate the efficacy of human-simulated regimens (HSRs) of ceftazidime, ceftazidime/avibactam, imipenem, imipenem/relebactam, meropenem and meropenem/vaborbactam in a murine thigh infection model against serine carbapenemase-producing Pseudomonas aeruginosa. METHODS: Nine P. aeruginosa clinical isolates harbouring GES-5 (n = 1), GES-20 (n = 1), GES-5/20 (n = 1), GES-19, GES-20 (n = 3) and KPC (n = 3) were evaluated. Six mice were administered HSRs of ceftazidime 2â g q8h (2â h infusion), ceftazidime/avibactam 2.5â g q8h (2â h infusion), meropenem 2â g q8h (3â h infusion), imipenem 0.5â g q6h (0.5â h infusion), imipenem/relebactam 1.25â g q6h (0.5â h infusion) and meropenem/vaborbactam 4â g q8h (3â h infusion). Change in bacterial burden relative to baseline and the percent of isolates meeting the 1â log10 kill endpoint were assessed. RESULTS: The addition of avibactam to ceftazidime increased the percentage of isolates meeting 1â log10 kill from 33% to 100% of GES- or KPC-harbouring isolates. Imipenem/relebactam HSR produced ≥1â log10 of kill against 83% and 100% of GES- and KPC-harbouring isolates, respectively, while imipenem alone failed to reach 1â log10 kill for any isolates. Vaborbactam resulted in variable restoration of meropenem activity as 1â log10 kill was achieved in only 33% and 66% of GES- and KPC-harbouring isolates, respectively, compared with no isolates for meropenem alone. CONCLUSIONS: Ceftazidime/avibactam and imipenem/relebactam were active against 100% and 89% of KPC- or GES-harbouring isolates tested in vivo. The activity of meropenem/vaborbactam was variable, suggesting this may be an inferior treatment option in this setting. Further studies to evaluate clinical outcomes in GES- and KPC-producing P. aeruginosa are warranted given their increasing prevalence worldwide.
Asunto(s)
Compuestos de Azabiciclo , Proteínas Bacterianas , Ácidos Borónicos , Pseudomonas aeruginosa , Inhibidores de beta-Lactamasas , beta-Lactamasas , Humanos , Animales , Ratones , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/uso terapéutico , Meropenem/farmacología , Ceftazidima/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Imipenem/farmacología , SerinaRESUMEN
OBJECTIVES: We evaluated the efficacies of human-simulated regimens (HSRs) of two clinically utilized sulbactam regimens: 1 g q6h 0.5 h infusion (maximum FDA-approved dosage) and 3 g q8h 4 h infusion (high-dose, prolonged-infusion regimen), against Acinetobacter baumannii in a translational murine model. METHODS: Thirty-two clinical A. baumannii isolates were investigated, of which 16 were sulbactam resistant (MICâ≥â16 mg/L), 6 were sulbactam intermediate (MICâ=â8 mg/L) and 10 were sulbactam susceptible (MICâ≤â4 mg/L). Efficacies of the two sulbactam HSRs were assessed in the neutropenic murine pneumonia model. Changes in log10 cfu/lungs at 24 h compared with 0 h controls were measured, and efficacy was defined as achieving 1 log kill relative to baseline. WGS of the isolates and bioinformatics analysis were performed to explore potential associations between the genomic backgrounds and the in vivo responses. RESULTS: Eleven isolates harboured blaOXA-23, of which 10 were sulbactam resistant, 1 was sulbactam intermediate while none was sulbactam susceptible. Both sulbactam HSRs achieved >1 log kill against sulbactam-susceptible isolates. Against sulbactam-intermediate and sulbactam-resistant isolates, lack of efficacy correlated with the presence of the blaOXA-23 gene; sulbactam 1 g HSR and 3 g HSR did not show efficacy against 11/11 and 9/11 blaOXA-23-positive isolates, respectively, while efficacy was observed against all 11 blaOXA-23-negative sulbactam-intermediate and sulbactam-resistant isolates (i.e. harbouring other resistance genes). CONCLUSIONS: A sulbactam high-dose prolonged-infusion regimen provides comparable activity to the standard dose against isolates currently considered sulbactam susceptible. However, the activity against isolates with intermediate and resistant susceptibility could be predicted by the detection of blaOXA-23. Enhancing detection capabilities of common diagnostic modalities to include OXA-23 can improve patient outcome.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Sulbactam , beta-Lactamasas , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Sulbactam/administración & dosificación , Sulbactam/uso terapéutico , Sulbactam/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , beta-Lactamasas/genética , Humanos , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Modelos Animales de Enfermedad , Femenino , Resultado del Tratamiento , Farmacorresistencia BacterianaRESUMEN
BACKGROUND: Lack of uniformity in infection models complicates preclinical development. The COMBINE protocol has standardized the murine neutropenic pneumonia model. Herein we provide benchmark efficacy data of humanized exposures of tigecycline and levofloxacin in plasma and epithelial lining fluid (ELF) against a collection of Klebsiella pneumoniae and Pseudomonas aeruginosa. METHODS: Following the COMBINE protocol, plasma and ELF human-simulated regimens (HSRs) of tigecycline 100â mg followed by 50â mg q12h and levofloxacin 750â mg once daily were developed and confirmed in the murine neutropenic pneumonia model. Tigecycline HSRs were tested against seven K. pneumoniae isolates. Levofloxacin HSRs were assessed against 10 K. pneumoniae and 9 P. aeruginosa. The change in cfu/lung over 24â h for each treatment was calculated. Each isolate was tested in duplicate against both the plasma and ELF HSRs on separate experiment days. RESULTS: Tigecycline 1.8 and 3â mg/kg q12h achieved humanized exposures of serum and ELF, respectively. Levofloxacin 120 and 90â mg/kg q8h led to fAUC exposures in plasma and ELF similar to in humans. Both tigecycline regimens were ineffective across the MIC range. Levofloxacin regimens achieved multilog kill against susceptible isolates, and no appreciable cfu/lung reductions in isolates with an MIC of ≥32â mg/L. Differences in cfu/lung were evident between the levofloxacin plasma and ELF HSRs against isolates with MICs of 4 and 8â mg/L. CONCLUSIONS: Administering HSRs of tigecycline and levofloxacin based on both serum/plasma and ELF in the COMBINE pneumonia model resulted in cfu/lung values reasonably aligned with MIC. These data serve as translational benchmarks for future investigations with novel compounds.
RESUMEN
BACKGROUND: Preclinical murine infection models lack inter-laboratory uniformity, complicating result comparisons and data reproducibility. The European Innovative Medicines initiative-funded consortium (COMBINE) has developed a standardized murine neutropenic pneumonia protocol to address these concerns. While model methods have been standardized, a major obstacle to consistent results is the lack of available bacteria with defined viability and variability. Herein, we establish a diverse challenge set of Klebsiella pneumoniae and Pseudomonas aeruginosa suitable for use in the COMBINE protocol to further minimize experimental inconsistency and improve the interpretability of data generated among differing laboratories. MATERIALS AND METHODS: Sixty-six K. pneumoniae and 65 P. aeruginosa were phenotypically profiled against tigecycline (K. pneumoniae only), levofloxacin, meropenem, cefiderocol and tobramycin. Fifty-nine isolates were introduced into the COMBINE model to assess the sufficiency of the starting bacterial inoculation, resultant baseline bacterial burden, achievement of ≥1 log10cfu/lung growth at 24â h, time to and percentage mortality. Forty-five isolates displaying desirable minimum inhibitory concentration profiles were subjected to replicate in vivo testing to assess target parameters. RESULTS: 83% of K. pneumoniae reached the prerequisite growth at 24â h using a starting bacterial burden ≥7 log10cfu/lung. P. aeruginosa isolates grew well in the model: 90% achieved the growth target with a starting bacterial burden of 6 log10cfu/lung. Mortality was negligible for K. pneumoniae but high for P. aeruginosa. Poor or inconsistent achievement of the 24â h growth target was seen in 11/59 isolates. CONCLUSIONS: With this diverse cache of viable isolates established in the COMBINE pneumonia model, future translational studies can be undertaken to set efficacy benchmarks among laboratories.
RESUMEN
BACKGROUND: Sulbactam dosing for Acinetobacter baumannii infections has not been standardized due to limited available pharmacokinetics/pharmacodynamics (PK/PD) data. Herein, we report a comprehensive PK/PD analysis of ampicillin-sulbactam against A. baumannii pneumonia. METHODS: Twenty-one A. baumannii clinical isolates were tested in the neutropenic murine pneumonia model. For dose-ranging studies, groups of mice were administered escalating doses of ampicillin-sulbactam. Changes in log10cfu/lungs relative to 0 h were assessed. Dose-fractionation studies were performed. Estimates of the percentage of of time during which the unbound plasma sulbactam concentrations exceeded the MIC (%fTâ>âMIC) required for different efficacy endpoints were calculated. The probabilities of target attainment (PTA) for the 1-log kill plasma targets were estimated following clinically utilized sulbactam regimens. RESULTS: Dose-fractionation studies demonstrated time-dependent kill. Isolates resistant to both sulbactam and meropenem required three times the exposures to achieve 1-log kill; median [IQR] %fTâ>âMIC of 60.37% [51.6-66.8] compared with other phenotypes (21.17 [16.0-32.9] %fTâ>âMIC). Sulbactam standard dose (1 g q6h, 0.5 h infusion) provided >90% PTA up to MIC of 4 mg/L. Sulbactam 3 g q8h, 4 h inf provided greater PTA for isolates with sulbactam-intermediate susceptibility (8 mg/L, 100% versus 86% following the standard dose). Despite the higher exposure following 3 g q8h, 4 h inf, PTA was ≤57% among sulbactam-resistant/meropenem-resistant isolates. CONCLUSION: Sulbactam standard dose is a valuable regimen across sulbactam-susceptible isolates while the high-dose extended-infusion provides additional benefit against sulbactam-intermediate isolates. Given that most of the sulbactam-resistant A. baumannii isolates are meropenem-resistant, high-dose prolonged-infusion regimens are not expected to be effective as monotherapy against infections due to these isolates.
Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Ampicilina , Antibacterianos , Pruebas de Sensibilidad Microbiana , Sulbactam , Acinetobacter baumannii/efectos de los fármacos , Sulbactam/farmacocinética , Sulbactam/administración & dosificación , Sulbactam/farmacología , Sulbactam/uso terapéutico , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Animales , Ampicilina/farmacocinética , Ampicilina/administración & dosificación , Ampicilina/farmacología , Ratones , Femenino , Modelos Animales de Enfermedad , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , HumanosRESUMEN
BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality but has the potential to alter the pharmacokinetics (PK) of antimicrobials. Imipenem/cilastatin/relebactam is an antibiotic with utility in treating certain multi-drug resistant Gram-negative infections. Herein, we describe the population pharmacokinetics of imipenem and relebactam in critically ill patients supported on ECMO. METHODS: Patients with infection supported on ECMO received 4-6 doses of imipenem/cilastatin/relebactam per current prescribing information based on estimated creatinine clearance. Blood samples were collected following the final dose of the antibiotic. Concentrations were determined via LC-MS/MS. Population PK models were fit with and without covariates using Pmetrics. Monte Carlo simulations of 1000 patients assessed joint PTA of fAUC0-24/MICâ≥â8 for relebactam, and ≥40% fTâ>âMIC for imipenem for each approved dosing regimen. RESULTS: Seven patients supported on ECMO were included in PK analyses. A two-compartment model with creatinine clearance as a covariate on clearance for both imipenem and relebactam fitted the data best. The meanâ±âstandard deviation parameters were: CL0, 15.21â±â6.52 L/h; Vc, 10.13â±â2.26 L; K12, 2.45â±â1.16 h-1 and K21, 1.76â±â0.49 h-1 for imipenem, and 6.95â±â1.34 L/h, 9.81â±â2.69 L, 2.43â±â1.13 h-1 and 1.52â±â0.67 h-1 for relebactam. Simulating each approved dose of imipenem/cilastatin/relebactam according to creatinine clearance yielded PTAs of ≥90% up to an MIC of 2 mg/L. CONCLUSIONS: Imipenem/cilastatin/relebactam dosed according to package insert in patients supported on ECMO is predicted to achieve exposures sufficient to treat susceptible Gram-negative isolates, including Pseudomonas aeruginosa.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Enfermedad Crítica , Oxigenación por Membrana Extracorpórea , Imipenem , Pruebas de Sensibilidad Microbiana , Humanos , Imipenem/farmacocinética , Imipenem/administración & dosificación , Masculino , Persona de Mediana Edad , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Femenino , Adulto , Compuestos de Azabiciclo/farmacocinética , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/uso terapéutico , Anciano , Método de Montecarlo , Espectrometría de Masas en Tándem , Combinación Cilastatina e Imipenem/farmacocinéticaRESUMEN
BACKGROUND: Patients infected with difficult-to-treat Pseudomonas aeruginosa are likely to receive meropenem (MEM) empirically before escalation to ceftolozane/tazobactam (C/T). We assessed whether pre-exposure to MEM affected C/T resistance development on C/T exposure. MATERIALS AND METHODS: Nine clinical P. aeruginosa isolates were exposed to MEM 16â mg/L for 72â h. Then, isolates were serially passaged in the presence of C/T (concentration of 10â mg/L) for 72â h as two groups: an MEM-exposed group inoculated with MEM pre-exposed isolates and a non-MEM control group. At 24â h intervals, samples were plated on drug-free and drug-containing agar (C/T concentration 16/8â mg/L) and incubated to quantify bacterial densities (log10 cfu/mL). Growth on C/T agar indicated resistance development, and resistant population was calculated by dividing the cfu/mL on C/T plates by the cfu/mL on drug-free agar. RESULTS: At 72â h, resistant populations were detected in 6/9 isolates. In five isolates, MEM exposure significantly increased the prevalence of ceftolozane/tazobactam-resistance development; the percentages of resistance population were 100%, 100%, 53.5%, 31% and 3% for the MEM-exposed versus 0%, 0%, 2%, 0.35% and ≤0.0003% in the unexposed groups. One isolate had a similar resistant population at 72â h between the two groups. The remaining isolates showed no development of resistance, regardless of previous MEM exposure. CONCLUSIONS: MEM exposure may pre-dispose to C/T resistance development and thus limit the therapeutic utility of this ß-lactam/ß-lactamase inhibitor. Resistance may be a result of stress exposure or molecular-level mutations conferring cross-resistance. Further in vivo studies are needed to assess clinical implications of these findings.
Asunto(s)
Antibacterianos , Cefalosporinas , Meropenem , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Tazobactam , Pseudomonas aeruginosa/efectos de los fármacos , Cefalosporinas/farmacología , Meropenem/farmacología , Tazobactam/farmacología , Antibacterianos/farmacología , Humanos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Pase SeriadoRESUMEN
BACKGROUND: Bacterial persistence is a phenomenon whereby a subpopulation of bacteria survive high concentrations of an active antibiotic in the absence of phenotypic alterations. Persisters are associated with chronic and recurrent infections for pathogens including Pseudomonas aeruginosa. Understanding persister profiles of newer antibiotics such as cefiderocol and ceftolozane/tazobactam against P. aeruginosa is warranted as these agents generally target difficult-to-treat infections. METHODS: Persister formation was assessed using in vitro assays against nine clinical P. aeruginosa isolates exposed to cefiderocol or ceftolozane/tazobactam. Quantitative persister assays were performed using a stationary phase of bacteria challenged with 10-fold MIC drug concentrations. Persisters were quantitated as the percent persisters at 24â h and the log ratio (LR) difference in AUC for cfu for each antibiotic alone compared with growth control. The tolerance disc test (TDtest) was used to qualitatively detect persisters. RESULTS: Percent persisters at 24â h was lower with cefiderocol compared with ceftolozane/tazobactam for six of the nine tested isolates. Eight of the nine isolates had higher reduction in LR for cefiderocol groups, suggesting an overall higher and more rapid bacterial reduction in cefiderocol groups. For cefiderocol, five of the nine tested isolates lacked regrowth after replacement with glucose disc, suggesting no persistence via the TDtest. For ceftolozane/tazobactam, three isolates lacked persister formation. CONCLUSIONS: Cefiderocol resulted in less bacterial persistence relative to ceftolozane/tazobactam against nine clinical P. aeruginosa isolates. Cefiderocol's siderophore mechanism may be advantageous over ceftolozane/tazobactam through enhanced anti-persister effects. Clinical correlation of these findings is warranted as persisters can lead to antibiotic resistance and treatment failure.
RESUMEN
PURPOSE: Carbapenem resistant Pseudomonas aeruginosa (CR-PA) is escalating worldwide and leaves clinicians few therapeutic options in recent years, ß-lactam/ß-lactamase inhibitor combinations (ceftolozane-tazobactam, ceftazidime-avibactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment of P. aeruginosa infection and have shown potent activity against isolates defined as carbapenem resistant. The aim of this study was to determine the phenotypic profile of these agents against CR-PA in the emerging setting of carbapenemases. METHODS: CR-PA clinical isolates were collected from three teaching hospitals in different geographical regions between January 2017-December 2021. All isolates were subjected to phenotypic carbapenemase testing using modified carbapenem inactivation method. MICs were determined by reference broth microdilution and evaluated according to EUCAST standards, while genotypic profiling was determined using PCR methods. RESULTS: 244 CR-PA sourced most frequently from the respiratory tract (32.2%), blood (20.4%) and urine (17.5%) were evaluated. Of all isolates, 32 (13.1%) were phenotypically and 38 (15.6%) were genotypically defined as carbapenemase-positive. The most common carbapenemase was GES (63.1%), followed by VIM (15.8%). The MIC50/90(S%) of ceftazidime/avibactam, ceftolozane/tazobactam and cefiderocol in all CR-PA isolates were 4 and 32 (80%), 1 and > 64 (69%) and 0.25 and 1 mg/L (96%), respectively. Cefiderocol was also the most active agent in carbapenemase-positive isolates (90%). CONSLUSION: While ceftolozane/tazobactam and ceftazidime/avibactam remained highly active against CR-PA devoid of carbapenemases, cefiderocol provided potent in vitro activity irrespective of carbapenemase production. When considering the potential clinical utility of newer agents against CR-PA, regional variations in carbapenemase prevalence must be considered.
Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Cefiderocol , Ceftazidima , Cefalosporinas , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Tazobactam , Humanos , Cefalosporinas/farmacología , Ceftazidima/farmacología , Compuestos de Azabiciclo/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Infecciones por Pseudomonas/microbiología , Tazobactam/farmacología , Antibacterianos/farmacología , Persona de Mediana Edad , Femenino , Masculino , Adulto , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Anciano , Carbapenémicos/farmacología , Proteínas Bacterianas/genética , Adulto Joven , Adolescente , Inhibidores de beta-Lactamasas/farmacología , NiñoRESUMEN
The objective was to determine the magnitude of the EVER206 free-plasma area under the concentration time curve (fAUC)/MIC target associated with bacteriostasis and 1-log10 kill against clinically relevant Gram-negative bacteria in the murine thigh model. Twenty-seven clinical isolates (Pseudomonas aeruginosa, n = 10; Escherichia coli, n = 9; Klebsiella pneumoniae, n = 5; Enterobacter cloacae, n = 2; and Klebsiella aerogenes, n = 1) were tested. Mice were pretreated with cyclophosphamide (induce neutropenia) and uranyl nitrate (increase the exposure of test compound through predictable renal dysfunction). Two hours postinoculation, five doses of EVER206 were administered subcutaneously. EVER206 pharmacokinetics were determined in infected mice. Data were fit using maximum effect (Emax) models to elucidate the fAUC/MIC targets for stasis and 1-log10 bacterial kill (reported as mean [range] by species). EVER206 MICs (mg/L) ranged from 0.25 to 2 mg/L (P. aeruginosa), 0.06 to 2 mg/L (E. coli), 0.06 to 0.125 mg/L (E. cloacae), 0.06 mg/L (K. aerogenes), and 0.06 to 2 mg/L (K. pneumoniae). In vivo, the mean 0-h baseline bacterial burden was 5.57 ± 0.39 log10 CFU/thigh. Stasis was achieved in 9/10 P. aeruginosa (fAUC/MIC, 88.13 [50.33 to 129.74]), 9/9 E. coli (fAUC/MIC, 112.84 [19.19 to 279.38]), 2/2 E. cloacae (fAUC/MIC, 259.28 [124.08 to 394.47]), 0/1 K. aerogenes, and 4/5 K. pneumoniae (fAUC/MIC, 99.26 [62.3 to 144.43]) isolates tested. 1-log10 kill was achieved in 9/10 for P. aeruginosa (fAUC/MIC, 106.43 [55.22 to 152.08]), 3/9 for E. coli (fAUC/MIC, 258.96 [74.08 to 559.4]), and 1/2 for E. cloacae (fAUC/MIC, 255.33). Using the murine thigh model, the fAUC/MIC targets of EVER206 were assessed across a broad MIC distribution. Integrating these data with microbiologic and clinical exposure data will aid in determining the clinical dose of EVER206.
Asunto(s)
Antibacterianos , Antiinfecciosos , Ratones , Animales , Antibacterianos/uso terapéutico , Antibacterianos/farmacocinética , Muslo/microbiología , Polimixinas/farmacología , Escherichia coli , Antiinfecciosos/farmacología , Klebsiella pneumoniae , Bacterias , Pruebas de Sensibilidad MicrobianaRESUMEN
Pseudomonas aeruginosa is a common multidrug-resistant pathogen in patients with cystic fibrosis (CF). The in vitro activity of imipenem/relebactam and imipenem was compared with other antipseudomonal antibiotics against 105 isolates from patients with CF from three US hospitals. Imipenem/relebactam, imipenem, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam susceptibilities were 77%, 55%, 58%, 90%, and 92%, respectively. Relebactam potentiates imipenem against CF P. aeruginosa by fourfold leading imipenem/relebactam to retain susceptibility against most isolates in this cohort.
Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Imipenem/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Ceftazidima/farmacología , Pruebas de Sensibilidad Microbiana , Combinación de MedicamentosRESUMEN
BACKGROUND: Cefepime/taniborbactam is a cephalosporin/bicyclic boronate ß-lactamase inhibitor combination in clinical development for nosocomial pneumonia due to MDR Gram-negative bacteria. A murine pneumonia model was used to characterize cefepime/taniborbactam in vivo pharmacodynamics against Enterobacterales and Pseudomonas aeruginosa strains. METHODS: Clinical cefepime-non-susceptible Enterobacterales and P. aeruginosa strains expressing serine carbapenemases and/or other cefepime-hydrolysing ß-lactamases with cefepime/taniborbactam combination MICs of 0.12-16 mg/L were used. Cefepime and taniborbactam human-simulated regimens equivalent to clinical doses (i.e. 2/0.5 g q8h) were established in the pneumonia model. The in vivo activity of the cefepime human-simulated regimen given alone or concomitantly with escalating taniborbactam exposures against eight Enterobacterales and four P. aeruginosa strains was assessed. Taniborbactam pharmacokinetics were evaluated to determine systemic exposures of regimens used; taniborbactam fAUC0-24/MIC values required for efficacy were estimated using the Hill equation. In addition, the in vivo activity of the cefepime/taniborbactam combination human-simulated regimen was assessed against 18 strains. RESULTS: Among Enterobacterales, median taniborbactam fAUC0-24/MIC values associated with stasis and 1 log kill were 0.96 and 4.03, respectively, while for P. aeruginosa, requirements were 1.35 and 3.02 for stasis and 1 log kill, respectively. The cefepime/taniborbactam human-simulated regimen produced >2 log kill in 14/18 strains and >1 log kill in 18/18 strains. CONCLUSIONS: Cefepime/taniborbactam produced marked in vivo bactericidal activity against cefepime-non-susceptible Enterobacterales and P. aeruginosa isolates with cefepime/taniborbactam MICs up to and including 16 mg/L in the pneumonia model. Assessments of the probability of clinical attainment of the identified targets should be undertaken to support the selected cefepime/taniborbactam dose for treatment of nosocomial pneumonia.
Asunto(s)
Neumonía Asociada a la Atención Médica , Neumonía , Humanos , Animales , Ratones , Cefepima , Antibacterianos/farmacología , Pseudomonas aeruginosa , Cefalosporinas/farmacología , Pruebas de Sensibilidad Microbiana , Neumonía/tratamiento farmacológico , Neumonía Asociada a la Atención Médica/tratamiento farmacológico , beta-LactamasasRESUMEN
BACKGROUND: Sulbactam-durlobactam is a potent combination active against Acinetobacter baumannii; however, it lacks activity against other nosocomial pathogens. Cefepime is a common first-line therapy for hospital/ventilator-associated pneumonia caused by Gram-negative pathogens including Pseudomonas aeruginosa and Enterobacterales. With increasing resistance to cefepime, and the significant proportion of polymicrobial nosocomial infections, effective therapy for infections caused by Acinetobacter baumannii, P. aeruginosa and Enterobacterales is needed. This study investigated the in vitro synergy of sulbactam-durlobactam plus cefepime against relevant pathogens. METHODS: Static time-kills assays were performed in duplicate against 14 cefepime-resistant isolates (A. baumannii, nâ=â4; P. aeruginosa, nâ=â4; Escherichia coli, nâ=â3; Klebsiella pneumoniae, nâ=â3). One WT K. pneumoniae isolate was included. Antibiotic concentrations simulated the free-steady state average concentration of clinically administered doses in patients. RESULTS: Sulbactam-durlobactam alone showed significant activity against A. baumannii consistent with the MIC values. Sulbactam-durlobactam plus cefepime showed synergy against one A. baumannii isolate with an elevated MIC to sulbactam-durlobactam (32 mg/L). Against all P. aeruginosa isolates, synergy was observed with sulbactam-durlobactam plus cefepime. For the Enterobacterales, one E. coli isolate demonstrated synergy while the others were indifferent due to significant kill from sulbactam-durlobactam alone. The combination of sulbactam-durlobactam plus cefepime showed synergy against one of the K. pneumoniae and additive effects against the other two K. pneumoniae tested. No antagonism was observed in any isolates including the WT strain. CONCLUSIONS: Synergy and no antagonism was observed with a combination of sulbactam-durlobactam and cefepime; further in vivo pharmacokinetic/pharmacodynamics data and clinical correlation are necessary to support our findings.
Asunto(s)
Acinetobacter baumannii , Pseudomonas aeruginosa , Humanos , Cefepima/farmacología , Escherichia coli , Antibacterianos/farmacología , Sulbactam/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
OBJECTIVES: We evaluated the in vivo efficacy of human-simulated regimens (HSRs) of cefiderocol, ceftazidime/avibactam, meropenem and ceftazidime/avibactam/meropenem combination against Guiana-extended spectrum (GES)-producing Pseudomonas aeruginosa isolates. METHODS: Eighteen P. aeruginosa isolates producing GES-1 (nâ=â5), GES-5 (nâ=â5) or miscellaneous GESs (combinations of GES-19, GES-20 and/or GES-26; nâ=â8) were evaluated. In vitro MIC testing was determined using broth microdilution. In a validated murine thigh infection model, HSRs of cefiderocol 2 g q8h as a 3 h IV infusion, ceftazidime/avibactam 2.5 g q8h as a 2 h IV infusion, meropenem 2 g q8h as a 3 h IV infusion or ceftazidime/avibactam/meropenem were administered. Change in bacterial burden relative to baseline and the proportion of isolates in each genotypic group meeting 1-log10 kill endpoint were assessed. RESULTS: Modal MICs (mg/L) ranged from 0.125 to 1 for cefiderocol, 4 to >64 for ceftazidime/avibactam and 2 to >64 for meropenem. Cefiderocol produced >1-log10 of kill against all 18 tested isolates. Meropenem was active against all GES-1 isolates whereas activity against GES-5 and miscellaneous GESs was lacking, consistent with the MICs. Ceftazidime/avibactam was active against all GES-1 and GES-5 isolates and retained activity against 62.5% of miscellaneous GESs including isolates with elevated MICs. For isolates where ceftazidime/avibactam failed, the addition of meropenem restored the in vivo efficacy. CONCLUSIONS: As monotherapy, cefiderocol was active in vivo against all tested isolates. The activities of meropenem or ceftazidime/avibactam alone were variable; however, a combination of both was active against all isolates. Cefiderocol and ceftazidime/avibactam/meropenem could be valuable therapeutic options for GES-producing P. aeruginosa infections. Clinical confirmatory data are warranted.
Asunto(s)
Antibacterianos , Ceftazidima , Animales , Humanos , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/farmacología , Ceftazidima/uso terapéutico , Pseudomonas aeruginosa , Meropenem , Pseudomonas , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , beta-Lactamasas , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana , CefiderocolRESUMEN
BACKGROUND: Antimicrobial resistance in Pseudomonas aeruginosa is complex and multifaceted. While the novel ß-lactamase inhibitors (BLIs) avibactam, relebactam and vaborbactam inhibit serine-based ß-lactamases, the comparative potency of the novel ß-lactam (BL)/BLI combinations against serine carbapenemase-producing P. aeruginosa is unknown. OBJECTIVES: To compare the in vitro activity of ceftazidime/avibactam, ceftazidime, imipenem/relebactam, imipenem, meropenem/vaborbactam and meropenem against serine ß-lactamase-producing P. aeruginosa. METHODS: Carbapenem-resistant P. aeruginosa were collated through the Enhancing Rational Antimicrobials against Carbapenem-resistant P. aeruginosa (ERACE-PA) Global Surveillance. Isolates positive for serine-based carbapenemases were assessed. MICs were determined by broth microdilution to each novel BL/BLI and BL alone. RESULTS: GES was the most common carbapenemase identified (nâ=â59) followed by KPC (nâ=â8). Ceftazidime/avibactam had MIC50/MIC90 values of 4/8 mg/L and 91% of isolates were susceptible. Conversely, ceftazidime alone was active against only 3% of isolates. The MIC50/MIC90 of imipenem/relebactam were 16/>16 mg/L and 13% of all isolates were defined as susceptible. Of the KPC-producing isolates, 38% were susceptible to imipenem/relebactam, compared with 0% to imipenem. The meropenem/vaborbactam MIC50/MIC90 were >16/>16 mg/L, and 6% of isolates were susceptible, which was similar to meropenem alone (MIC50/90, >8/>8 mg/L; 3% susceptible) suggesting the addition of vaborbactam cannot overcome co-expressed, non-enzymatic resistance mechanisms. CONCLUSIONS: Among the novel BL/BLIs, ceftazidime/avibactam displayed better in vitro activity and thus is a rational treatment option for serine carbapenemase-harbouring P. aeruginosa. While imipenem/relebactam displayed some activity, particularly against isolates with blaKPC, meropenem/vaborbactam exhibited poor activity, with MICs similar to meropenem alone.
Asunto(s)
Carbapenémicos , Ceftazidima , Meropenem/farmacología , Ceftazidima/farmacología , Carbapenémicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , Pseudomonas aeruginosa , Lactamas , Compuestos de Azabiciclo/farmacología , Antibacterianos/farmacología , beta-Lactamasas , Imipenem/farmacología , Combinación de Medicamentos , Pruebas de Sensibilidad MicrobianaRESUMEN
BACKGROUND: Two of the three recently approved ß-lactam agent (BL)/ß-lactamase inhibitor (BLI) combinations have higher CLSI susceptibility breakpoints (ceftazidime/avibactam 8 mg/L; meropenem/vaborbactam 4 mg/L) compared with the BL alone (ceftazidime 4 mg/L; meropenem 1 mg/L). This can lead to a therapeutic grey area on susceptibility reports depending on resistance mechanism. For instance, a meropenem-resistant OXA-48 isolate (MIC 4 mg/L) may appear as meropenem/vaborbactam-susceptible (MIC 4 mg/L) despite vaborbactam's lack of OXA-48 inhibitory activity. METHODS: OXA-48-positive (nâ=â51) and OXA-48-negative (KPC, nâ=â5; Klebsiella pneumoniae wild-type, nâ=â1) Enterobacterales were utilized. Susceptibility tests (broth microdilution) were conducted with ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam, as well as their respective BL partner. Antimicrobial activity of all six agents was evaluated in the murine neutropenic thigh model using clinically relevant exposures. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0 h controls. RESULTS: On average, the three BL/BLI agents resulted in robust bacteria killing among OXA-48-negative isolates. Among OXA-48-positive isolates, poor in vivo activity with imipenem/relebactam was concordant with its resistant phenotypic profile. Variable meropenem/vaborbactam activity was observed among isolates with a 'susceptible' MIC of 4 mg/L. Only 30% (7/23) of isolates at meropenem/vaborbactam MICs of 2 and 4 mg/L met the ≥1-log bacterial reduction threshold predictive of clinical efficacy in serious infections. In contrast, ceftazidime/avibactam resulted in marked bacterial density reduction across the range of MICs, and 96% (49/51) of isolates exceeded the ≥1-log bacterial reduction threshold. CONCLUSIONS: Data demonstrate that current imipenem/relebactam and ceftazidime/avibactam CLSI breakpoints are appropriate. Data also suggest that higher meropenem/vaborbactam breakpoints relative to meropenem can translate to potentially poor clinical outcomes in patients infected with OXA-48-harbouring isolates.