Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23386, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112398

RESUMEN

CD4+ T-cell counts are increased and activated in patients with chronic heart failure (CHF), whereas regulatory T-cell (Treg) expansion is inhibited, probably due to aberrant T-cell receptor (TCR) signaling. TCR signaling is affected by protein tyrosine phosphatase nonreceptor type 22 (PTPN22) in autoimmune disorders, but whether PTPN22 influences TCR signaling in CHF remains unclear. This observational case-control study included 45 patients with CHF [18 patients with ischemic heart failure versus 27 patients with nonischemic heart failure (NIHF)] and 16 non-CHF controls. We used flow cytometry to detect PTPN22 expression, tyrosine phosphorylation levels, zeta-chain-associated protein kinase, 70 kDa (ZAP-70) inhibitory residue tyrosine 292 and 319 phosphorylation levels, and CD4+ T cell and Treg proportions. We conducted lentivirus-mediated PTPN22 RNA silencing in isolated CD4+ T cells. PTPN22 expression increased in the CD4+ T cells of patients with CHF compared with that in controls. PTPN22 expression was positively correlated with left ventricular end-diastolic diameter and type B natriuretic peptide but negatively correlated with left ventricular ejection fraction in the NIHF group. ZAP-70 tyrosine 292 phosphorylation was decreased, which correlated positively with PTPN22 overexpression in patients with NIHF and promoted early TCR signaling. PTPN22 silencing induced Treg differentiation in CD4+ T cells from patients with CHF, which might account for the reduced frequency of peripheral Tregs in these patients. PTPN22 is a potent immunomodulator in CHF and might play an essential role in the development of CHF by promoting early TCR signaling and impairing Treg differentiation from CD4+ T cells.


Asunto(s)
Insuficiencia Cardíaca , Receptores de Antígenos de Linfocitos T , Humanos , Estudios de Casos y Controles , Volumen Sistólico , Receptores de Antígenos de Linfocitos T/metabolismo , Función Ventricular Izquierda , Proteínas Tirosina Fosfatasas , Linfocitos T Reguladores , Tirosina , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética
2.
Immunology ; 172(4): 600-613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637948

RESUMEN

Immune cell infiltration is a significant pathological process in abdominal aortic aneurysms (AAA). T cells, particularly CD4+ T cells, are essential immune cells responsible for substantial infiltration of the aorta. Regulatory T cells (Tregs) in AAA have been identified as tissue-specific; however, the time, location, and mechanism of acquiring the tissue-specific phenotype are still unknown. Using single-cell RNA sequencing (scRNA-seq) on CD4+ T cells from the AAA aorta and spleen, we discovered heterogeneity among CD4+ T cells and identified activated, proliferating and developed aorta Tregs. These Tregs originate in the peripheral tissues and acquire the tissue-specific phenotype in the aorta. The identification of precursors for Tregs in AAA provides new insight into the pathogenesis of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Análisis de la Célula Individual , Linfocitos T Reguladores , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/patología , Linfocitos T Reguladores/inmunología , Humanos , Animales , Masculino , Linfocitos T CD4-Positivos/inmunología , Ratones , Análisis de Secuencia de ARN , Bazo/inmunología , Activación de Linfocitos , Ratones Endogámicos C57BL
3.
J Transl Med ; 21(1): 224, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973679

RESUMEN

BACKGROUND: Both the crystalline and soluble forms of cholesterol increase macrophage secretion of interleukin 1ß (IL-1ß), aggravating the inflammatory response in atherosclerosis (AS). However, the link between cholesterol and regulatory T cells (Tregs) remains unclear. This study aimed to investigate the effect of cholesterol treatment on Tregs. METHODS: Differentiation of induced Tregs (iTregs) was analyzed using flow cytometry. The expression of hypoxia-inducible factor-1a (HIF-1a) and its target genes was measured by western blotting and/or RT-qPCR. Two reporter jurkat cell lines were constructed by lentiviral transfection. Mitochondrial function and the structure of natural Tregs (nTregs) were determined by tetramethylrhodamine (TMRM) and mitoSOX staining, Seahorse assay, and electron microscopy. The immunoregulatory function of nTregs was determined by nTreg-macrophage co-culture assay and ELISA. RESULTS: Cholesterol treatment suppressed iTreg differentiation and impaired nTreg function. Mechanistically, cholesterol induced the production of mitochondrial reactive oxygen species (mtROS) in naïve T cells, inhibiting the degradation of HIF-1α and unleashing its inhibitory effects on iTreg differentiation. Furthermore, cholesterol-induced mitochondrial oxidative damage impaired the immunosuppressive function of nTregs. Mixed lymphocyte reaction and nTreg-macrophage co-culture assays revealed that cholesterol treatment compromised the ability of nTregs to inhibit pro-inflammatory conventional T cell proliferation and promote the anti-inflammatory functions of macrophages. Finally, mitoTEMPO (MT), a specific mtROS scavenger, restored iTreg differentiation and protected nTreg from further deterioration. CONCLUSION: Our findings suggest that cholesterol may aggravate inflammation within AS plaques by acting on both iTregs and nTregs, and that MT may be a promising anti-atherogenic drug.


Asunto(s)
Inflamación , Linfocitos T Reguladores , Humanos , Diferenciación Celular , Inflamación/metabolismo , Mitocondrias/metabolismo , Técnicas de Cocultivo , Factores de Transcripción Forkhead/metabolismo
4.
Cytokine ; 164: 156142, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804259

RESUMEN

AIMS: Studies have confirmed that the IL-23R/IL-17A axis plays an important role in the development of autoimmune and inflammatory diseases. However, its role in coronary artery disease (CAD) remains unclear. Here, we conducted a large sample case-control study to investigate the association between the IL23R/IL17A axis and CAD in the Chinese Han population. METHODS: Two SNPs, rs2275913: G>A (IL17A) and rs6682925: T>C (IL23R), were genotyped in 3042 CAD cases and 3216 controls using the high-resolution melt technology (HRM). Logistic regression analyses were used to adjust the traditional risk factors for CAD and perform the gene interaction analyses. Multiple linear regression analyses were used to study the relationships between the selected SNPs and the levels of serum lipids. In addition, meta-analysis also was performed for the association between rs6682925 and rs2275913 with CAD in different popolations. RESULTS: Our case-control and meta-analysis for single SNPs demonstrated that the frequencies of the alleles and the distribution of the genotypes had no significant differences in CAD cases compared with controls. In the stratified analysis, we observed that the frequency of the IL17A rs2275913-A allele was more epidemic in early-onset CAD than in the controls (Padj = 0.005, OR = 1.209, 95% CI: 1.059-1.382), and the minor allele C of rs6682925 was associated with a decreased level of serum total cholesterol under a recessive model (Padj = 0.011). We demonstrated a significant interaction between rs6682925 and rs2275913 and CAD in the Chinese Han population. Four genotypes (CTGG, CCAA, CCAG, CCGG) were significantly associated with CAD (Padj = 2.94 × 10-4, OR = 0.619, 95% CI: 0.478-0.803; Padj = 0.01, OR = 1.808, 95% CI: 1.152-1.869; Padj = 6 × 10-6, OR = 2.179, 95% CI: 1.558-3.049; Padj = 0.001, OR = 1.883, 95% CI: 1.282-2.762, respectively). CONCLUSION: Our study found no single SNP of rs2275913 in IL17A and rs6682925 in IL23R was associated with CAD in the Chinese population, but the interaction of them were significantly associated with CAD susceptibility, highlighting the key role of the IL-23R/IL-17A axis in the development of CAD. In addition, we also found rs2275913 was associated with early-onset CAD and rs6682925 was associated with total cholesterol levels, which will contribute to the clinical stratified management of this common disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interleucina-17 , Humanos , Interleucina-17/genética , Enfermedad de la Arteria Coronaria/genética , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple/genética , Colesterol , Predisposición Genética a la Enfermedad , Receptores de Interleucina/genética
5.
FASEB J ; 36(3): e22172, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35133017

RESUMEN

Abdominal aortic aneurysms (AAAs) elicit massive inflammatory leukocyte recruitment to the aorta. CD4+ T cells, which include regulatory T cells (Tregs) and conventional T cells (Tconvs), are involved in the progression of AAA. Tregs have been reported to limit AAA formation. However, the function and phenotype of the Tconvs found in AAAs remain poorly understood. We characterized aortic Tconvs by bulk RNA sequencing and discovered that Tconvs in aortic aneurysm highly expressed Cxcr6 and Csf2. Herein, we determined that the CXCR6/CXCL16 signaling axis controlled the recruitment of Tconvs to aortic aneurysms. Deficiency of granulocyte-macrophage colony-stimulating factor (GM-CSF), encoded by Csf2, markedly inhibited AAA formation and led to a decrease of inflammatory monocytes, due to a reduction of CCL2 expression. Conversely, the exogenous administration of GM-CSF exacerbated inflammatory monocyte infiltration by upregulating CCL2 expression, resulting in worsened AAA formation. Mechanistically, GM-CSF upregulated the expression of interferon regulatory factor 5 to promote M1-like macrophage differentiation in aortic aneurysms. Importantly, we also demonstrated that the GM-CSF produced by Tconvs enhanced the polarization of M1-like macrophages and exacerbated AAA formation. Our findings revealed that GM-CSF, which was predominantly derived from Tconvs in aortic aneurysms, played a pathogenic role in the progression of AAAs and may represent a potential target for AAA treatment.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos/inmunología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Cytokine ; 150: 155761, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34814015

RESUMEN

Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Interleucina-9 , Pueblo Asiatico/genética , Estudios de Casos y Controles , China/epidemiología , Enfermedad de la Arteria Coronaria/genética , Etnicidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
7.
Circulation ; 142(20): 1956-1973, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32985264

RESUMEN

BACKGROUND: Regulatory T cells (Tregs), traditionally recognized as potent suppressors of immune response, are increasingly attracting attention because of a second major function: residing in parenchymal tissues and maintaining local homeostasis. However, the existence, unique phenotype, and function of so-called tissue Tregs in the heart remain unclear. METHODS: In mouse models of myocardial infarction (MI), myocardial ischemia/reperfusion injury, or cardiac cryoinjury, the dynamic accumulation of Tregs in the injured myocardium was monitored. The bulk RNA sequencing was performed to analyze the transcriptomic characteristics of Tregs from the injured myocardium after MI or ischemia/reperfusion injury. Photoconversion, parabiosis, single-cell T-cell receptor sequencing, and adoptive transfer were applied to determine the source of heart Tregs. The involvement of the interleukin-33/suppression of tumorigenicity 2 axis and Sparc (secreted acidic cysteine-rich glycoprotein), a molecule upregulated in heart Tregs, was further evaluated in functional assays. RESULTS: We showed that Tregs were highly enriched in the myocardium of MI, ischemia/reperfusion injury, and cryoinjury mice. Transcriptomic data revealed that Tregs isolated from the injured hearts had plenty of differentially expressed transcripts in comparison with their lymphoid counterparts, including heart-draining lymphoid nodes, with a phenotype of promoting infarct repair, indicating a unique characteristic. The heart Tregs were accumulated mainly because of recruitment from the circulating Treg pool, whereas local proliferation also contributed to their expansion. Moreover, a remarkable case of repeatedly detected T-cell receptor of heart Tregs, more than that of spleen Tregs, suggests a model of clonal expansion. Besides, HelioshighNrp-1high phenotype proved the mainly thymic origin of heart Tregs, with a small contribution of phenotypic conversion of conventional CD4+ T cells, proved by the analysis of T-cell receptor repertoires and conventional CD4+ T cells adoptive transfer experiments. The interleukin-33/suppression of tumorigenicity 2 axis was essential for sustaining heart Treg populations. Last, we demonstrated that Sparc, which was highly expressed by heart Tregs, acted as a critical factor to protect the heart against MI by increasing collagen content and boosting maturation in the infarct zone. CONCLUSIONS: We identified and characterized a phenotypically and functionally unique population of heart Tregs that may lay the foundation to harness Tregs for cardioprotection in MI and other cardiac diseases.


Asunto(s)
Traslado Adoptivo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/inmunología , Linfocitos T Reguladores/inmunología , Animales , Modelos Animales de Enfermedad , Interleucina-33/inmunología , Ratones , Infarto del Miocardio/inmunología , Daño por Reperfusión Miocárdica/inmunología , Miocardio/patología , Osteonectina/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Reguladores/patología
8.
Biochem Biophys Res Commun ; 547: 139-147, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610913

RESUMEN

Fibrotic scarring is tightly linked to the development of heart failure in patients with post-myocardial infarction (MI). Atypical chemokine receptor 4 (ACKR4) can eliminate chemokines, such as C-C chemokine ligand 21 (CCL21), which is independently associated with heart failure mortality. However, the role of ACKR4 in the heart during MI is unrevealed. This study aimed to determine whether ACKR4 modulates cardiac remodeling following MI and to illuminate the potential molecular mechanisms. The expression of ACKR4 was upregulated in the border/infarct area, and ACKR4 was predominantly expressed in cardiac fibroblasts (CFs). Knockout of ACKR4 protected against adverse ventricular remodeling in mice post-MI. These protective effects of ACKR4 deficiency were independent of dendritic cell immune response but could be attributed to downregulated CF-derived IL-6, affecting CF proliferation and endothelial cell (EC) functions, which consequently inhibited cardiac fibrosis. ACKR4 promoted IL-6 generation and proliferation of CFs. Besides, ACKR4 induced endothelial-to-mesenchymal transition (EndMT) in ECs through IL-6 paracrine effect. The p38 MAPK/NF-κB signaling pathway was involved in ACKR4 facilitated IL-6 generation. Moreover, ACKR4 overexpression in vivo via AAV9 carrying a periostin promoter aggravated heart functional impairment post-MI, which was abolished by IL-6 neutralizing antibody. Therefore, our study established a novel link between ACKR4 and IL-6 post-MI, indicating that ACKR4 may be a novel therapeutic target to ameliorate cardiac remodeling.


Asunto(s)
Fibroblastos/metabolismo , Interleucina-6/antagonistas & inhibidores , Infarto del Miocardio/metabolismo , Receptores CCR/deficiencia , Remodelación Ventricular , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Interleucina-6/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Receptores CCR/genética , Receptores CCR/metabolismo , Transducción de Señal
9.
Basic Res Cardiol ; 116(1): 46, 2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34302556

RESUMEN

Overactivated inflammatory responses contribute to adverse ventricular remodeling after myocardial infarction (MI). Regulatory B cells (Bregs) are a newly discovered subset of B cells with immunomodulatory roles in many immune and inflammation-related diseases. Our study aims to determine whether the expansion of Bregs exerts a beneficial effect on ventricular remodeling and explore the mechanisms involved. Here, we showed that adoptive transfer of Bregs ameliorated ventricular remodeling in a murine MI model, as demonstrated by improved cardiac function, decreased scar size and attenuated interstitial fibrosis without changing the survival rate. Reduced Ly6Chi monocyte infiltration was found in the hearts of the Breg-transferred mice, while the infiltration of Ly6Clo monocytes was not affected. In addition, the replenishment of Bregs had no effect on the myocardial accumulation of T cells or neutrophils. Mechanistically, Bregs reduced the expression of C-C motif chemokine receptor 2 (CCR2) in monocytes, which inhibited proinflammatory monocyte recruitment to the heart from the peripheral blood and mobilization from the bone marrow. Breg-mediated protection against MI was abrogated by treatment with an interleukin 10 (IL-10) antibody. Finally, IL-10 neutralization reversed the effect of Bregs on monocyte migration and CCR2 expression. The present study suggests a therapeutic value of Bregs in limiting ventricular remodeling after MI through decreasing CCR2-mediated monocyte recruitment and mobilization.


Asunto(s)
Linfocitos B Reguladores , Infarto del Miocardio , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Monocitos , Remodelación Ventricular
10.
FASEB J ; 34(2): 3224-3238, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917470

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is common clinical complication, which represents significant challenge in the treatment of acute myocardial infarction (AMI) diseases. Interleukin 35 (IL-35) exhibits anti-inflammatory properties via the engagement of the gp130, IL-12Rß2 and IL-27Rα receptors. However, whether IL-35 plays a beneficial role in the treatment of MIRI and potential underling mechanism are unclear. We showed that IL-35 conferred protection from MIRI as demonstrated by reduced infarct size and cardiac troponin T, improved cardiac function and decreased cardiomyocyte apoptosis in a mouse model. Despite activation of both STAT3 and STAT5 phosphorylation in the heart by IL-35, signal transducers and activators of transcription 3 (STAT3) was essential for mediating the IL-35-mediated protective effect on MIRI using cardiomyocyte-specific STAT3 deficient mice. Furthermore, gp130 was required for the STAT3 activation and cardio-protection induced by IL-35. Interestingly, IL-35 induced gp130 homodimer and gp130/IL-12Rß2 heterodimers in cardiomyocyte. Our results indicate that IL-35 can execute a protective role against MIRI through a novel signaling pathway, IL-35-gp130-STAT3 pathway, in cardiomyocytes, which may be beneficial for the development of novel and effective therapeutic approaches to treat the MIRI.


Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Interleucinas/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis , Línea Celular , Células Cultivadas , Interleucinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Troponina T/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 39(3): 446-458, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651000

RESUMEN

Objective- Inflammation occurs during the progression of abdominal aortic aneurysm (AAA). IL (interleukin)-33 is a pleiotropic cytokine with multiple immunomodulatory effects, yet its role in AAA remains unknown. Approach and Results- Immunoblot, immunohistochemistry, and immunofluorescent staining revealed increased IL-33 expression in adventitia fibroblasts from mouse AAA lesions. Daily intraperitoneal administration of recombinant IL-33 or transgenic IL-33 expression ameliorated periaorta CaPO4 injury- and aortic elastase exposure-induced AAA in mice, as demonstrated by blunted aortic expansion, reduced aortic wall elastica fragmentation, enhanced AAA lesion collagen deposition, attenuated T-cell and macrophage infiltration, reduced inflammatory cytokine production, skewed M2 macrophage polarization, and reduced lesion MMP (matrix metalloproteinase) expression and cell apoptosis. Flow cytometry analysis, immunostaining, and immunoblot analysis showed that exogenous IL-33 increased CD4+Foxp3+ regulatory T cells in spleens, blood, and aortas in periaorta CaPO4-treated mice. Yet, ST2 deficiency muted these IL-33 activities. Regulatory T cells from IL-33-treated mice also showed significantly stronger activities in suppressing smooth muscle cell inflammatory cytokine and chemokine expression, macrophage MMP expression, and in increasing M2 macrophage polarization than those from vehicle-treated mice. In contrast, IL-33 failed to prevent AAA and lost its beneficial activities in CaPO4-treated mice after selective depletion of regulatory T cells. Conclusions- Together, this study established a role of IL-33 in protecting mice from AAA formation by enhancing ST2-dependent aortic and systemic regulatory T-cell expansion and their immunosuppressive activities.


Asunto(s)
Aneurisma de la Aorta Abdominal/prevención & control , Interleucina-33/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Animales , Aorta/inmunología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/inmunología , Fosfatos de Calcio/toxicidad , Células Cultivadas , Citocinas/biosíntesis , Evaluación Preclínica de Medicamentos , Inyecciones Intraperitoneales , Proteína 1 Similar al Receptor de Interleucina-1/deficiencia , Proteína 1 Similar al Receptor de Interleucina-1/fisiología , Interleucina-33/genética , Interleucina-33/farmacología , Interleucina-33/uso terapéutico , Macrófagos/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Elastasa Pancreática/toxicidad , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Linfocitos T Reguladores/inmunología , Remodelación Vascular
12.
Eur Heart J ; 40(48): 3924-3933, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31365073

RESUMEN

AIMS: A persistent cardiac T-cell response initiated by myocardial infarction is linked to subsequent adverse ventricular remodelling and progression of heart failure. No data exist on T-cell receptor (TCR) repertoire changes in combination with phenotypic characterization of T cells in ischaemic failing human hearts. METHODS AND RESULTS: Analysis of TCR repertoire with high-throughput sequencing revealed that compared with T cells in control hearts, those in ischaemic failing hearts showed a clonally expanded TCR repertoire but similar usage patterns of TRBV-J rearrangements and V gene segments; compared with T cells in peripheral blood, those in ischaemic failing hearts exhibited a restricted and clonally expanded TCR repertoire and different usage patterns of TRBV-J rearrangements and V gene segments, suggesting the occurrence of tissue-specific T-cell expansion in ischaemic failing hearts. Consistently, TCR clonotype sharing was prominent in ischaemic failing hearts, especially in hearts of patients who shared human leucocyte antigen (HLA) alleles. Furthermore, ischaemia heart failure (IHF) heart-associated clonotypes were more frequent in peripheral blood of IHF patients than in that of controls. Heart-infiltrating T cells displayed memory- and effector-like characteristics. Th1 cells were the predominant phenotype among CD4+ T cells; CD8+ T cells were equally as abundant as CD4+ T cells and produced high levels of interferon-γ, granzyme B, and perforin. CONCLUSION: We provide novel evidence for a tissue-specific T-cell response predominated by Th1 cells and cytotoxic CD8+ T cells in ischaemic failing human hearts that may contribute to the progression of heart failure.


Asunto(s)
Insuficiencia Cardíaca/patología , Infarto del Miocardio/patología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/patología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Estudios de Casos y Controles , Células Clonales/metabolismo , Progresión de la Enfermedad , Granzimas/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Memoria Inmunológica/genética , Interferón gamma/metabolismo , Isquemia , Infarto del Miocardio/metabolismo , Perforina/metabolismo , Fenotipo , Remodelación Ventricular
13.
J Biol Chem ; 292(14): 6004-6013, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27974462

RESUMEN

CD4+ T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4+ T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4+ T cell activation in DCM. CD4+ T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4+ T cells revealed a distinct pattern of miRNA expression in CD4+ T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4+ T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4+ T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4+ T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Cardiomiopatía Dilatada/inmunología , Proliferación Celular , Regulación hacia Abajo/inmunología , Activación de Linfocitos , MicroARNs/inmunología , Proteínas Proto-Oncogénicas c-myc/inmunología , Regiones no Traducidas 5'/inmunología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/patología , Cardiomiopatía Dilatada/patología , Femenino , Humanos , Masculino
14.
Cell Physiol Biochem ; 46(1): 23-35, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566367

RESUMEN

BACKGROUND/AIMS: Newly identified IL-10-producing regulatory B cells (Bregs) have been shown to play an important role in the suppression of immune responses. Chronic immune activation participates in the pathogenesis of dilated cardiomyopathy (DCM) but whether Bregs are involved in its development remains unclear. We aimed to investigate the circulating frequency and function of Bregs in DCM. METHODS: In total, 35 DCM patients (20 men and 15 women) and 44 healthy controls (23 men and 21 women) were included in the experiment, and the frequency of Bregs was detected using flow cytometry. RESULTS: According to our results, the frequency of circulating IL-10-producing Bregs was significantly lower in DCM patients compared with healthy controls. Furthermore, the CD24hiCD27+ B cell subset in which IL-10-producing Bregs were mainly enriched from DCM patients showed impaired IL-10 expression and a decreased ability to suppress the TNF-α production of CD4+CD25- Tconv cells and to maintain Tregs differentiation. Correlation analysis showed that the frequency of IL-10-producing Bregs and the suppressive function of CD24hiCD27+ B cells were positively correlated with left ventricular ejection fraction and negatively correlated with NT-proBNP in DCM patients. CONCLUSIONS: In conclusion, the reduced frequency and impaired functions suggest a potential role of Bregs in the development of DCM.


Asunto(s)
Linfocitos B Reguladores/metabolismo , Cardiomiopatía Dilatada/patología , Adulto , Anciano , Linfocitos B Reguladores/citología , Antígeno CD24/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Proliferación Celular , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Interleucina-10/metabolismo , Leucocitos Mononucleares/citología , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/análisis , Péptido Natriurético Encefálico/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Am J Hum Genet ; 93(4): 652-60, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24075188

RESUMEN

The effects of interleukin-33 (IL-33) on the immune system have been clearly demonstrated; however, in cardiovascular diseases, especially in coronary artery disease (CAD), these effects have not yet been clarified. In this study, we investigate the genetic role of the IL-33-ST2L pathway in CAD. We performed three-stage case-control association analyses on a total of 4,521 individuals with CAD and 4,809 controls via tag SNPs in the genes encoding IL-33 and ST2L-IL-1RL1. One tag SNP in each gene was significantly associated with CAD (rs7025417(T) in IL33, padj = 1.19 × 10(-28), OR = 1.39, 95% CI: 1.31-1.47; rs11685424(G) in IL1RL1, padj = 6.93 × 10(-30), OR = 1.40, 95% CI: 1.32-1.48). Combining significant variants in two genes, the risk for CAD increased nearly 5-fold (padj = 8.90 × 10(-21), OR = 4.98, 95% CI: 3.56-6.97). Traditional risk factors for CAD were adjusted for the association studies by SPSS with logistic regression analysis. With the two variants above, both located within the gene promoter regions, reporter gene analysis indicated that the rs7025417 C>T and rs11685424 A>G changes resulted in altered regulation of IL33 and IL1RL1 gene expression, respectively (p < 0.005). Further studies revealed that the rs7025417 genotype was significantly associated with plasma IL-33 levels in the detectable subjects (n = 227, R(2) = 0.276, p = 1.77 × 10(-17)): the level of IL-33 protein increased with the number of rs7025417 risk (T) alleles. Based on genetic evidence in humans, the IL-33-ST2L pathway appears to have a causal role in the development of CAD, highlighting this pathway as a valuable target for the prevention and treatment of CAD.


Asunto(s)
Pueblo Asiatico/genética , Enfermedad de la Arteria Coronaria/genética , Interleucinas/sangre , Receptores de Superficie Celular/sangre , Alelos , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/sangre , Femenino , Genes Reporteros , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Factores de Riesgo
17.
Clin Sci (Lond) ; 128(10): 679-93, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25558978

RESUMEN

Regulatory T-cells (Tregs) are generally regarded as key immunomodulators that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. However, its role in myocardial ischaemia/reperfusion injury (MIRI) remains unknown. The purpose of the present study was to determine whether Tregs exert a beneficial effect on mouse MIRI. We examined the role of Tregs in murine MIRI by depletion using 'depletion of regulatory T-cell' (DEREG) mice and adoptive transfer using Forkhead box P3 (Foxp3)-GFP knockin mice and the mechanisms of cardio protection were further studied in vivo and in vitro. Tregs rapidly accumulated in murine hearts following MIRI. Selective depletion of Tregs in the DEREG mouse model resulted in aggravated MIRI. In contrast, the adoptive transfer of in vitro-activated Tregs suppressed MIRI, whereas freshly isolated Tregs had no effect. Mechanistically, activated Treg-mediated protection against MIRI was not abrogated by interleukin (IL)-10 or transforming growth factor (TGF)-ß1 inhibition but was impaired by the genetic deletion of cluster of differentiation 39 (CD39). Moreover, adoptive transfer of in vitro-activated Tregs attenuated cardiomyocyte apoptosis, activated a pro-survival pathway involving Akt and extracellular-signal-regulated kinase (ERK) and inhibited neutrophil infiltration, which was compromised by CD39 deficiency. Finally, the peripheral blood mononuclear cells of acute myocardial infarction (AMI) patients after primary percutaneous coronary intervention (PCI) revealed a decrease in CD4+CD25+CD127low Tregs and a relative increase in CD39+ cells within the Treg population. In conclusion, our data validated a protective role for Tregs in MIRI. Moreover, in vitro-activated Tregs ameliorated MIRI via a CD39-dependent mechanism, representing a putative therapeutic strategy.


Asunto(s)
Antígenos CD/metabolismo , Apirasa/metabolismo , Inmunoterapia/métodos , Activación de Linfocitos/inmunología , Daño por Reperfusión Miocárdica/inmunología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo/métodos , Análisis de Varianza , Animales , Factores de Transcripción Forkhead/genética , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo
18.
Stroke ; 45(2): 383-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24385277

RESUMEN

BACKGROUND AND PURPOSE: ANRIL has long been considered as the strongest candidate gene at the 9p21 locus, robustly associated with stroke and coronary artery disease. However, the underlying molecular mechanism remains unknown. The present study works to elucidate such a mechanism. METHODS: Using expression quantitative loci analysis, we identified potential genes whose expression may be influenced by genetic variation in ANRIL. To verify the identified gene(s), knockdown and overexpression of ANRIL were evaluated in human umbilical vein endothelial cells and HepG2 cells. Ischemic stroke and coronary artery disease risk were then evaluated in the gene(s) demonstrated to be mediated by ANRIL in 3 populations of Chinese Han ancestry: 2 ischemic stroke populations consisting of the Central China cohort (903 cases and 873 controls) and the Northern China cohort (816 cases and 879 controls) and 1 coronary artery disease cohort consisting of 772 patients and 873 controls. RESULTS: Expression quantitative loci analysis identified CARD8 among others, with knockdown of ANRIL expression decreasing CARD8 expression and overexpression of ANRIL increasing CARD8 expression. The minor T allele of a previously identified CARD8 variant (rs2043211) was found to be significantly associated with a protective effect of ischemic stroke under the recessive model in 2 independent stroke cohorts. No significant association was found between rs2043211 and coronary artery disease. CONCLUSIONS: CARD8 is a downstream target gene regulated by ANRIL. Single nucleotide polymorphism rs2043211 in CARD8 is significantly associated with ischemic stroke. ANRIL may increase the risk of ischemic stroke through regulation of the CARD8 pathway.


Asunto(s)
Isquemia Encefálica/genética , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , Accidente Cerebrovascular/genética , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Isquemia Encefálica/epidemiología , China/epidemiología , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Femenino , Expresión Génica/fisiología , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Accidente Cerebrovascular/epidemiología , Transfección
19.
J Biol Chem ; 287(41): 34157-66, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22872639

RESUMEN

Regulatory T (Treg) cells play a protective role against the development of atherosclerosis. Previous studies have revealed Treg cell defects in patients with non-ST elevation acute coronary syndrome (NSTACS), but the mechanisms underlying these defects remain unclear. In this study, we found that the numbers of peripheral blood CD4(+)CD25(+)CD127(low) Treg cells and CD4(+)CD25(+)CD127(low)CD45RA(+)CD45RO(-) naive Treg cells were lower in the NSTACS patients than in the chronic stable angina (CSA) and the chest pain syndrome (CPS) patients. However, the number of CD4(+)CD25(+)CD127(low)CD45RA(-)CD45RO(+) memory Treg cells was comparable in all of the groups. The frequency of CD4(+)CD25(+)CD127(low)CD45RO(-)CD45RA(+)CD31(+) recent thymic emigrant Treg cells and the T cell receptor excision circle content of purified Treg cells were lower in the NSTACS patients than in the CSA patients and the CPS controls. The spontaneous apoptosis of Treg cells (defined as CD4(+)CD25(+)CD127(low)annexin V(+)7-AAD(-)) was increased in the NSTACS patients compared with the CSA and CPS groups. Furthermore, oxidized LDL could induce Treg cell apoptosis, and the oxidized LDL levels were significantly higher in the NSTACS patients than in the CSA and CPS groups. In accordance with the altered Treg cell levels, the concentration of TNF-α was increased in the NSTACS patients, resulting in a decreased IL-10/TNF-α ratio. These findings indicate that the impaired thymic output of Treg cells and their enhanced susceptibility to apoptosis in the periphery were responsible for Treg cell defects observed in the NSTACS patients.


Asunto(s)
Síndrome Coronario Agudo/sangre , Apoptosis , Linfocitos T Reguladores/metabolismo , Timo/metabolismo , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/inmunología , Anciano , Antígenos CD/sangre , Antígenos CD/inmunología , Transporte Biológico/inmunología , Femenino , Humanos , Interleucina-11/sangre , Interleucina-11/inmunología , Lipoproteínas LDL/sangre , Lipoproteínas LDL/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Timo/inmunología , Timo/patología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
20.
Front Immunol ; 14: 1126997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960061

RESUMEN

Background: Epicardial adipose tissue (EAT) acts as an active immune organ and plays a critical role in the pathogenesis of heart failure (HF). However, the characteristics of immune cells in EAT of HF patients have rarely been elucidated. Methods: To identify key immune cells in EAT, an integrated bioinformatics analysis was performed on public datasets. EAT samples with paired subcutaneous adipose tissue (SAT), heart, and peripheral blood samples from HF patients were collected in validation experiments. T cell receptor (TCR) repertoire was assessed by high-throughput sequencing. The phenotypic characteristics and key effector molecules of T lymphocytes in EAT were assessed by flow cytometry and histological staining. Results: Compared with SAT, EAT was enriched for immune activation-related genes and T lymphocytes. Compared with EAT from the controls, activation of T lymphocytes was more pronounced in EAT from HF patients. T lymphocytes in EAT of HF patients were enriched by highly expanded clonotypes and had greater TCR clonotype sharing with cardiac tissue relative to SAT. Experiments confirmed the abundance of IFN-γ+ effector memory T lymphocytes (TEM) in EAT of HF patients. CCL5 and GZMK were confirmed to be associated with T lymphocytes in EAT of HF patients. Conclusion: EAT of HF patients was characterized by pronounced immune activation of clonally expanded IFN-γ+ TEM and a generally higher degree of TCR clonotypes sharing with paired cardiac tissue.


Asunto(s)
Tejido Adiposo , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/patología , Grasa Subcutánea , Pericardio/patología , Receptores de Antígenos de Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA