Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37477088

RESUMEN

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Asunto(s)
Neoplasias Colorrectales , Interleucina-6 , Humanos , Interleucina-6/efectos adversos , Interleucina-6/metabolismo , Fosforilación , beta Catenina/metabolismo , Vía de Señalización Wnt , Janus Quinasa 2/metabolismo , Neoplasias Colorrectales/genética , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Mol Cell Biochem ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507020

RESUMEN

Immunotherapy is regarded as a potent cancer treatment, with DC vaccines playing a crucial role. Although clinical trials have demonstrated the safety and efficacy of DC vaccines, loading antigens in vitro is challenging, and their therapeutic effects remain unpredictable. Moreover, the diverse subtypes and maturity states of DCs in the body could induce both immune responses and immune tolerance, potentially affecting the vaccine's efficacy. Hence, the optimization of DC vaccines remains imperative. Our study discovered a new therapeutic strategy by using CT26 and MC38 mouse colon cancer models, as well as LLC mouse lung cancer models. The strategy involved the synergistic activation of DCs through intertumoral administration of TLR4 agonist high-mobility group nucleosome binding protein 1 (HMGN1) and TLR7/8 agonist (R848/resiquimod), combined with intraperitoneal administration of TNFR2 immunosuppressant antibody. The experimental results indicated that the combined use of HMGN1, R848, and α-TNFR2 had no effect on LLC cold tumors. However, it was effective in eradicating CT26 and MC38 colon cancer and inducing long-term immune memory. The combination of these three drugs altered the TME and promoted an increase in anti-tumor immune components. This may provide a promising new treatment strategy for colon cancer.

3.
Biochem Biophys Res Commun ; 653: 106-114, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-36868074

RESUMEN

Immunotherapy is the new approach for cancer treatment that can be achieved through several strategies, one of which is dendritic cells (DCs) vaccine therapy. However, traditional DC vaccination lacks accurate targeting, so DC vaccine preparation needs to be optimized. Immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs) in the tumor microenvironment can promote tumor immune escape. Therefore, targeting Tregs has become a strategy for tumor immunotherapy. In this study, we found that HMGN1 (N1, a dendritic cell-activating TLR4 agonist) and 3M-052 (a newly synthesized TLR7/8 agonist) synergistically stimulate DCs maturation and increase the production of proinflammatory cytokines TNFα and IL-12. In a colon cancer mice model, vaccination with N1 and 3M-052 stimulated and tumor antigen-loaded DCs combined with anti-TNFR2 inhibited tumor growth in mice, and the antitumor effect was mainly achieved through stimulation of cytotoxic CD8 T cell activation and depletion of Tregs. Overall, the combinating of DC activation by N1 and 3M-052 with inhibition of Tregs by antagonizing TNFR2 as a therapeutic strategy may represent a more effective strategy for cancer treatment.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias del Colon , Proteína HMGN1 , Animales , Ratones , Neoplasias del Colon/patología , Citocinas , Células Dendríticas , Proteína HMGN1/farmacología , Ratones Endogámicos C57BL , Linfocitos T Reguladores , Factores de Transcripción/farmacología , Microambiente Tumoral
4.
Cell Commun Signal ; 21(1): 46, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864422

RESUMEN

BACKGROUND: Early metastasis is a hallmark of osteosarcoma (OS), a highly common type of malignant tumor. Members of the potassium inwardly rectifying channel family exert oncogenic effects in various cancers. However, the role of the potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) in OS is unclear. METHODS: The expression of KCNJ2 in OS tissues and cell lines was measured using bioinformatic analysis, immunohistochemistry, and western blotting. Wound-healing assays, Transwell assays, and lung metastasis models were used to analyze the effects of KCNJ2 on mobility of OS cells. The molecular mechanisms linking KCNJ2 and HIF1α in OS were explored by mass spectrometry analysis, immunoprecipitation, ubiquitination detection, and chromatin-immunoprecipitation quantitative real-time polymerase chain reaction. RESULTS: KCNJ2 was found to be overexpressed in advanced-stage OS tissues, as well as in cells with high metastatic potential. High expression of KCNJ2 was associated with a shorter survival rate of OS patients. KCNJ2-inhibition repressed the metastasis of OS cells, whereas KCNJ2-elevation induced the opposite effects. Mechanistically, KCNJ2 binds to HIF1α and inhibits its ubiquitination, thus increasing the expression of HIF1α. Interestingly, HIF1α binds directly to the KCNJ2 promoter and increases its transcription under hypoxic conditions. CONCLUSION: Taken together, our results indicated that a KCNJ2/HIF1α positive feedback loop exists in OS tissues, which significantly promotes OS cell metastasis. This evidence may contribute to the diagnosis and treatment of OS. Video Abstract.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Canales de Potasio de Rectificación Interna , Humanos , Retroalimentación , Bioensayo , Línea Celular , Neoplasias Óseas/genética , Canales de Potasio de Rectificación Interna/genética
5.
Lab Invest ; 101(10): 1371-1381, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34239033

RESUMEN

Sepsis is an acute inflammatory reaction and a cause of acute respiratory distress syndrome (ARDS). In the present study, we explored the roles and underlying mechanism of the lncRNA Nuclear enriched abundant transcript 1 (NEAT1) in ARDS. The expression levels of genes, proteins and pro-inflammatory cytokines in patients with ARDS, LPS-stimulated cells and septic mouse models were quantified using qPCR, western blotting and ELISA assays, respectively. The molecular targeting relationship was validated by conducting a dual-luciferase reporter assay. Cell proliferation was assessed using the Cell Counting Kit-8 (CCK-8) assay. The cell cycle phase was determined by flow cytometry assay. The expression levels of NEAT1 and pro-inflammatory cytokines were higher in patients with ARDS and septic models than in controls. Knockdown of NEAT1 significantly increased cell proliferation and cycle progression and prolonged mouse survival in vitro and in vivo. Mechanistically, miR-27a was identified as a downstream target of NEAT1 and directly inhibited PTEN expression. Further rescue experiments revealed that inhibition of miR-27a impeded the promoting effects of NEAT1 silence on cell proliferation and cycle progression, whereas inhibition of PTEN markedly weakened the inhibitory effects of NEAT1 overexpression on cell proliferation and cycle progression. Altogether, our study revealed that NEAT1 plays a promoting role in the progression of ARDS via the NEAT1/miR-27a/PTEN regulatory network, providing new insight into the pathologic mechanism behind ARDS.


Asunto(s)
MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , ARN Largo no Codificante , Síndrome de Dificultad Respiratoria/metabolismo , Sepsis/metabolismo , Adulto , Animales , Línea Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Fosfohidrolasa PTEN/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética
6.
Cell Biol Int ; 45(3): 623-632, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33245175

RESUMEN

Various studies demonstrated that bone morphogenetic proteins (BMPs) and their antagonists contribute to the development of cancers. Chordin-like 2 (CHRDL2) is a member of BMP antagonists. However, the role and its relative mechanism of CHRDL2 in osteosarcoma remains unclear. In the present study, we demonstrated that the expression of CHRDL2 was significantly upregulated in osteosarcoma tissues and cell lines compared with adjacent tissues and human normal osteoblast. Inhibition of CHRDL2 decreased the proliferation and colony formation of osteosarcoma cells in vitro, as well as the migration and invasion. CHRDL2 overexpression induced the opposite effects. CHRDL2 can bind with BMP-9, thus decreasing BMP-9 expression and the combination to its receptor protein kinase ALK1. It was predicted that BMP-9 regulates PI3K/AKT pathways using gene set enrichment analysis. Inhibition of CHRDL2 decreased the activation of PI3K/AKT pathway, while overexpression of CHRDL2 upregulated the activation. Increasing the expression of BMP-9 reversed the effects of CHRDL2 overexpression on the activation of PI3K/AKT pathway, as well as the proliferation and metastasis of osteosarcoma cells. Take together, our present study revealed that CHRDL2 upregulated in osteosarcoma tissues and cell lines, and promoted osteosarcoma cell proliferation and metastasis through the BMP-9/PI3K/AKT pathway. CHRDL2 maybe an oncogene in osteosarcoma, as well as novel biomarker for the diagnosis of osteosarcoma.


Asunto(s)
Neoplasias Óseas/patología , Proteínas de la Matriz Extracelular/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Proteínas de la Matriz Extracelular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Osteosarcoma/genética , Regulación hacia Arriba/genética
7.
J Cell Mol Med ; 24(1): 276-284, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746143

RESUMEN

Glioma is a common brain malignancy for which new drug development is urgently needed because of radiotherapy and drug resistance. Recent studies have demonstrated that artemisinin (ARS) compounds can display antiglioma activity, but the mechanisms are poorly understood. Using cell lines and mouse models, we investigated the effects of the most soluble ARS analogue artesunate (ART) on glioma cell growth, migration, distant seeding and senescence and elucidated the underlying mechanisms. Artemisinin effectively inhibited glioma cell growth, migration and distant seeding. Further investigation of the mechanisms showed that ART can influence glioma cell metabolism by affecting the nuclear localization of SREBP2 (sterol regulatory element-binding protein 2) and the expression of its target gene HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), the rate-limiting enzyme of the mevalonate (MVA) pathway. Moreover, ART affected the interaction between SREBP2 and P53 and restored the expression of P21 in cells expressing wild-type P53, thus playing a key role in cell senescence induction. In conclusion, our study demonstrated the new therapeutic potential of ART in glioma cells and showed the novel anticancer mechanisms of ARS compounds of regulating MVA metabolism and cell senescence.


Asunto(s)
Artesunato/farmacología , Neoplasias Encefálicas/patología , Senescencia Celular/efectos de los fármacos , Glioma/patología , Redes y Vías Metabólicas/efectos de los fármacos , Ácido Mevalónico/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
8.
Lupus ; 29(8): 872-883, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32580680

RESUMEN

Mesenchymal stem cells have been applied to treat graft versus host disease as they have immunosuppressive ability and can overcome the major histocompatibility complex-histocompatibility barrier. The potential of allogeneic mesenchymal stem cells in treating systemic lupus erythematosus (SLE) was investigated in this study. MRL/lpr mice which can develop acquired SLE-like phenotypes were selected as an animal model. Mesenchymal stem cells obtained from green fluorescent protein-transgenic ICR mice were infused into MRL/lpr mice at either the early or late stage of disease. The dosage was 1 × 106/mice per infusion. Mice were stratified into six groups including negative controls and those receiving one, two, three, four or five doses at 2-weekly intervals. The phenotypes were monitored regularly. After treatment, the spleen CD3+CD4-CD8- T and CD19+ B cells of two-dose mesenchymal stem cell-treated mice were significantly lower than those of the phosphate-buffered saline control. In terms of reducing the severity of SLE such as hair loss, skin ulcers, proteinuria and anti-dsDNA level, mesenchymal stem cells given at the early stage responded better and mice receiving two doses of mesenchymal stem cells performed better than those receiving either a lower dose (one dose) or higher doses (three, four or five doses). In conclusion, early treatment and an optimal dose of mesenchymal stem cells can effectively suppress the murine SLE model.


Asunto(s)
Lupus Eritematoso Sistémico/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Femenino , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Endogámicos ICR , Ratones Endogámicos MRL lpr , Linfocitos T/metabolismo
9.
Cancer Sci ; 110(4): 1220-1231, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30719823

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. The most important reason for the occurrence of HCC is hepatitis C or B infection. Moreover, genetic factors play an important role in the tumorigenesis of HCC. Here, we demonstrated that Krüppel-like factor 2 (KLF2) expression was downregulated in HCC samples compared with adjacent tissues. Additionally, KLF2 was shown to inhibit the growth, migration and colony-formation ability of liver cancer cells. Further mechanistic studies revealed that KLF2 can compete with Gli1 for interaction with HDAC1 and restrains Hedgehog signal activation. Together, our results suggest that KLF2 has potential as a diagnostic biomarker and therapeutic target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Masculino , Ratones , Ratones Noqueados , Proteína con Dedos de Zinc GLI1/metabolismo
10.
Biochem Biophys Res Commun ; 508(2): 543-549, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30509494

RESUMEN

Liver fibrosis, an important health condition associated with chronic liver injury that provides a permissive environment for cancer development, is characterized by the persistent deposition of extracellular matrix components that are mainly derived from activated hepatic stellate cells (HSCs). CDH11 belongs to a group of transmembrane proteins that are principally located in adherens junctions. CDH11 mediates homophilic cell-to-cell adhesion, which may promote the development of cirrhosis. The goal of this study was to determine whether CDH11 regulates liver fibrosis and to examine its mechanism by focusing on HSC activation. Here we demonstrate that CDH11 expression is elevated in human and mouse fibrotic liver tissues and that CDH11 mediates the profibrotic response in activated HSCs. Our data indicate that CDH11 regulates the TGFß-induced activation of HSCs. Moreover, cells from CDH11 deficient mice displayed decreased HSC activation in vitro, and CDH11 deficient mice developed liver fibrogenesis in response to chronic damage induced by CCl4 administration. In addition, CDH11 expression was positively correlated with liver fibrosis in patients with cirrhosis, and could therefore be a prognostic factor in patients with liver fibrosis. Collectively, our findings demonstrate that CDH11 promotes liver fibrosis by activating HSCs and may represent a potential target for anti-fibrotic therapies.


Asunto(s)
Cadherinas/fisiología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/etiología , Animales , Tetracloruro de Carbono/farmacología , Células Cultivadas , Humanos , Ratones , Pronóstico , Factor de Crecimiento Transformador beta
11.
Virol J ; 15(1): 178, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466469

RESUMEN

BACKGROUND: Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis. To detect RVF virus (RVFV) infection, indirect immunoglobulin G (IgG) and immunoglobulin M (IgM) enzyme linked immunosorbent assays (ELISAs) which utilize recombinant RVFV nucleocapsid (RVFV-N) protein as assay antigen, have reportedly been used, however, there is still a need to develop more sensitive and specific methods of detection. METHODS: RVFV-N protein was expressed in Escherichia coli (E. coli) and purified by histidine-tag based affinity chromatography. This recombinant RVFV-N (rRVFV-N) protein was then used as antigen to develop an IgG sandwich ELISA and IgM capture ELISAs for human sera. Ninety six serum samples collected from healthy volunteers during the RVF surveillance programme in Kenya in 2013, and 93 serum samples collected from RVF-suspected patients during the 2006-2007 RVF outbreak in Kenya were used respectively, to evaluate the newly established rRVFV-N protein-based IgG sandwich ELISA and IgM capture ELISA systems in comparison with the inactivated virus-based ELISA systems. RESULTS: rRVFV-N protein-based-IgG sandwich ELISA and IgM capture ELISA for human sera were established. Both the new ELISA systems were in 100% concordance with the inactivated virus-based ELISA systems, with a sensitivity and specificity of 100%. CONCLUSIONS: Recombinant RVFV-N is a safe and affordable antigen for RVF diagnosis. Our rRVFV-N-based ELISA systems are safe and reliable tools for diagnosis of RVFV infection in humans and especially useful in large-scale epidemiological investigation and for application in developing countries.


Asunto(s)
Antígenos Virales/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Nucleocápside/inmunología , Fiebre del Valle del Rift/diagnóstico , Virus de la Fiebre del Valle del Rift/inmunología , Inactivación de Virus , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/aislamiento & purificación , Escherichia coli/genética , Voluntarios Sanos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Fiebre del Valle del Rift/inmunología , Sensibilidad y Especificidad , Zoonosis/diagnóstico , Zoonosis/inmunología , Zoonosis/virología
12.
Health Sci Rep ; 7(6): e2167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38933422

RESUMEN

Background and Aims: Lung cancer is ranked as the second most prevalent form of cancer worldwide. Nonsmall cell lung cancer (NSCLC) represents the predominant histological subtype. Research suggests that one-third of lung cancer patients also experiencing depression. Antidepressants play an indispensable role in the management of NSCLC. Despite significant advancements in treatment, lung cancer patients still face a high mortality rate. Major depressive disorder (MDD) and related antidepressants involved in treatment efficacy and prognosis of NSCLC. However, there has been a lack of screening and analysis regarding genes and networks associated with both NSCLC and MDD. Methods: To investigate the correlation between MDD and NSCLC, our discovery and validation analysis included four datasets from the Gene Expression Omnibus database from NSCLC or MDD. Differential gene expression (DEGs) analysis, GO and KEGG Pathway, and protein-protein interaction network analyzes to identify hub genes, networks, and associated observations link between MDD and NSCLC. Results: The analysis of two datasets yielded a total of 84 downregulated and 52 upregulated DEGs. Pathway enrichment analyzes indicated that co-upregulated genes were enriched in the regulation of positive regulation of cellular development, collagen-containing extracellular matrix (ECM), cytokine binding, and axon guidance. We identified 20 key genes, which were further analyzed using the MCODE plugin to identify two core subnetworks. The integration of functionally similar genes provided valuable insights into the potential involvement of these hub genes in diverse biological processes including angiogenesis humoral immune response regulation inflammatory response organization ECM network. Conclusion: We have identified a total of 136 DEGs that participate in multiple biological signaling pathways. A total of 20 hub genes have demonstrated robust associations, potentially indicating novel diagnostic and therapeutic targets for both diseases.

13.
Int J Nanomedicine ; 19: 3589-3605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645464

RESUMEN

Purpose: This study aimed to develop a novel and feasible modification strategy to improve the solubility and antitumor activity of resiquimod (R848) by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-ß-CD). Methods: R848-loaded PLGA nanoparticles modified with 2-HP-ß-CD (CD@R848@NPs) were synthesized using an enhanced emulsification solvent-evaporation technique. The nanoparticles were then characterized in vitro by several methods, such as scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, particle size analysis, and zeta potential analysis. Then, the nanoparticles were loaded with IR-780 dye and imaged using an in vivo imaging device to evaluate their biodistribution. Additionally, the antitumor efficacy and underlying mechanism of CD@R848@NPs in combination with an anti-TNFR2 antibody were investigated using an MC-38 colon adenocarcinoma model in vivo. Results: The average size of the CD@R848@NPs was 376 ± 30 nm, and the surface charge was 21 ± 1 mV. Through this design, the targeting ability of 2-HP-ß-CD can be leveraged and R848 is delivered to tumor-supporting M2-like macrophages in an efficient and specific manner. Moreover, we used an anti-TNFR2 antibody to reduce the proportion of Tregs. Compared with plain PLGA nanoparticles or R848, CD@R848@NPs increased penetration in tumor tissues, dramatically reprogrammed M1-like macrophages, removed tumors and prolonged patient survival. Conclusion: The new nanocapsule system is a promising strategy for targeting tumor, reprogramming tumor -associated macrophages, and enhancement immunotherapy.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Neoplasias del Colon , Imidazoles , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Macrófagos Asociados a Tumores , Imidazoles/química , Imidazoles/farmacología , Imidazoles/farmacocinética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Animales , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Macrófagos Asociados a Tumores/efectos de los fármacos , Línea Celular Tumoral , Ratones , Humanos , Distribución Tisular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/administración & dosificación , Tamaño de la Partícula , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
14.
Int Immunopharmacol ; 121: 110251, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348230

RESUMEN

Lung cancer has the highest incidence rate and mortality worldwide. Moreover, multiple factors may cause heterogeneity in the efficacy of immunotherapy for lung cancer, and preclinical studies have gradually uncovered the promotive effects of psychological distress (PD) on tumor hallmarks. Therefore, treatment targeted at PD may be a vital factor in adjusting and improving immunotherapy for lung cancer. Here, by focusing on the central nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of PD on the lung immune system, the lung tumor microenvironment (TME) and immunotherapy, which brings a practicable means and psychosocial perspective to lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares , Distrés Psicológico , Humanos , Neoplasias Pulmonares/terapia , Inmunoterapia , Sistema Nervioso Central , Sistema Inmunológico , Microambiente Tumoral
15.
Front Pharmacol ; 14: 1286061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161697

RESUMEN

Introduction: As psychoneuroimmunology flourishes, there is compelling evidence that depression suppresses the anti-tumor immune response, promotes the progression of cancer, and inhibits the effectiveness of cancer immunotherapy. Recent studies have reported that antidepressants can not only alleviate the depressant condition of cancer patients, but also strengthen the anti-tumor immunity, thus suppressing tumors. Tumor necrosis factor receptor 2 (TNFR2) antagonistic antibodies (Anti-TNFR2) targeting tumor-infiltrating regulatory T cells (Tregs) has achieved great results in preclinical studies, and with a favorable toxicity profile than existing immunotherapies, and is expected to become a new generation of more effective treatment strategies. Understanding the effects of combination therapy with antidepressants and Anti-TNFR2 may help design new strategies for cancer immunotherapy. Methods: We treated CT26, HCT116, MCA38 and SW620 colon cancer cells with fluoxetine (0-50 µM), ansofaxine hydrochloride (0-50 µM) and amitifadine hydrochloride (0-150 µM) to examine their effects on cell proliferation and apoptosis. We explored the antitumor effects of ansofaxine hydrochloride in combination with or without Anti-TNFR in subcutaneously transplanted CT26 cells in tumor-bearing mouse model. Antitumor effects were evaluated by tumor volume. NK cell, M1 macrophage cell, CD4+ T cell, CD8+ T cell, exhausted CD8+ T and regulatory T cell (Tregs) subtypes were measured by flow cytometry. 5-hydroxytryptamine, dopamine and norepinephrine levels were measured by ELISA. Results: Oral antidepression, ansofaxine hydrochloride, enhanced peripheral dopamine levels, promoted CD8+T cell proliferation, promoted intratumoral infiltration of M1 and NK cells, decreased the proportion of tumor-infiltrating exhausted CD8+T cells, and strengthened anti-tumor immunity, thereby inhibiting colon cancer growth. In combination therapy, oral administration of ansofaxine hydrochloride enhanced the efficacy of Anti-TNFR2, and produced long-term tumor control in with syngeneic colorectal tumor-bearing mice, which was attributable to the reduction in tumor-infiltrating Treg quantity and the recovery of CD8+ T cells function. Discussion: In summary, our data reveal the role of ansofaxine hydrochloride in modulating the anti-tumor immunity. Our results support that exhausted CD8+T is an important potential mechanism by which ansofaxine hydrochloride activates anti-tumor immunity and enhances anti-tumor effects of anti-TNFR2.

16.
Front Genet ; 13: 928393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783275

RESUMEN

Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder with the underlying etiology yet incompletely understood and no cure treatment. Patients of fragile X syndrome (FXS) also manifest symptoms, e.g. deficits in social behaviors, that are core traits with ASD. Several studies demonstrated that a mutual defect in retinoic acid (RA) signaling was observed in FXS and ASD. However, it is still unknown whether RA replenishment could pose a positive effect on autistic-like behaviors in FXS. Herein, we found that RA signaling was indeed down-regulated when the expression of FMR1 was impaired in SH-SY5Y cells. Furthermore, RA supplementation rescued the atypical social novelty behavior, but failed to alleviate the defects in sociability behavior or hyperactivity, in Fmr1 knock-out (KO) mouse model. The repetitive behavior and motor coordination appeared to be normal. The RNA sequencing results of the prefrontal cortex in Fmr1 KO mice indicated that deregulated expression of Foxp2, Tnfsf10, Lepr and other neuronal genes was restored to normal after RA treatment. Gene ontology terms of metabolic processes, extracellular matrix organization and behavioral pathways were enriched. Our findings provided a potential therapeutic intervention for social novelty defects in FXS.

17.
Immunobiology ; 227(3): 152212, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35436750

RESUMEN

Interleukin-2 (IL-2) benefits some cancer patients by promoting the proliferation of cytotoxic effector T cells, but this process is limited by the expansion of regulatory T cells (Tregs). Low-dose cyclophosphamide (CTX) can inhibit the number and function of Tregs. We treated carcinoma-bearing mice with Vehicle, CTX, IL-2 and CTX + IL-2 to investigate the effects of low-dose CTX combined with IL-2 in antitumor treatment. In comparison to monotherapy, CTX + IL-2 significantly limited tumor growth, via tumor cell proliferation inhibition and increased apoptosis. The infiltration of CD8+ T cells in tumor tissues was significantly increased in the CTX + IL-2 group. CTX + IL-2 safely increased CD8+ T and natural killer cells in the spleen, lymph nodes and peripheral blood, and CTX attenuated the increase in Tregs induced by IL-2 in the spleen.


Asunto(s)
Interleucina-2 , Neoplasias , Animales , Linfocitos T CD8-positivos , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Humanos , Células Asesinas Naturales , Ratones , Neoplasias/tratamiento farmacológico , Linfocitos T Reguladores
18.
Int J Biol Sci ; 18(4): 1539-1554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280671

RESUMEN

Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms underlying the hyperactivation of Wnt/ß-catenin signaling are incompletely understood. In this study, Pantothenate kinase 1 (PANK1) is shown to be a negative regulator of Wnt/ß-catenin signaling. Downregulation of PANK1 in HCC correlates with clinical features. Knockdown of PANK1 promotes the proliferation, growth and invasion of HCC cells, while overexpression of PANK1 inhibits the proliferation, growth, invasion and tumorigenicity of HCC cells. Mechanistically, PANK1 binds to CK1α, exerts protein kinase activity and cooperates with CK1α to phosphorylate N-terminal serine and threonine residues in ß-catenin both in vitro and in vivo. Additionally, the expression levels of PANK1 and ß-catenin can be used to predict the prognosis of HCC. Collectively, the results of this study highlight the crucial roles of PANK1 protein kinase activity in inhibiting Wnt/ß-catenin signaling, suggesting that PANK1 is a potential therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Invasividad Neoplásica , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas Quinasas/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
19.
Cancer Res ; 82(1): 60-74, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764205

RESUMEN

Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/ß-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/ß-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/ß-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, whereas overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and to promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3ß to promote ß-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of ß-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. In addition, expression levels of NME7, ß-catenin, and MTHFD2 correlated with each other and with poor prognosis in patients with HCC. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/ß-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC. SIGNIFICANCE: The identification of NME7 as an activator of Wnt/ß-catenin signaling and MTHFD2 expression in HCC reveals a mechanism regulating one-carbon metabolism and potential therapeutic strategies for treating this disease.


Asunto(s)
Carbono/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/patología
20.
Oncogene ; 41(16): 2390-2403, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35277657

RESUMEN

Breast cancer stem cells (BCSCs) are the main drivers of recurrence and metastasis. However, commonly used drugs rarely target BCSCs. Via screenings, we found that Salt-inducible kinase 2 (SIK2) participated in breast cancer (BC) stemness maintenance and zebrafish embryos development. SIK2 was upregulated in recurrence samples. Knockdown of SIK2 expression reduced the proportion of BCSCs and the tumor initiation of BC cells. Mechanistically, SIK2, phosphorylated by CK1α, directly phosphorylated LRP6 in a SIK2 kinase activity-dependent manner, leading to Wnt/ß-catenin signaling pathway activation. ARN-3236 and HG-9-91-01, inhibitors of SIK2, inhibited LRP6 phosphorylation and ß-catenin accumulation and disturbed stemness maintenance. In addition, the SIK2-activated Wnt/ß-catenin signaling led to induction of IDH1 expression, causing metabolic reprogramming in BC cells. These findings demonstrate a novel mechanism whereby Wnt/ß-catenin signaling pathway is regulated by different kinases in response to metabolic requirement of CSCs, and suggest that SIK2 inhibition may potentially be a strategy for eliminating BCSCs.


Asunto(s)
Neoplasias de la Mama , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Proteínas Serina-Treonina Quinasas , Vía de Señalización Wnt , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA