Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
EMBO Rep ; 25(3): 1156-1175, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332148

RESUMEN

Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.


Asunto(s)
Macrófagos , Rhinovirus , Humanos , Macrófagos/microbiología , Macrófagos Alveolares , Fagocitosis , Bacterias
2.
Biol Cell ; : e202400045, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873915

RESUMEN

The French Society for Cell Biology (SBCF) is actively involved in communicating the latest advances and organizing scientific events, as well as supporting young researchers, in this field. The SBCF also supports and organizes outreaching activities designed to raise public awareness of science in general and cell biology in particular. The Society, in its present form, was founded in 1984. To mark this milestone, we are organizing a memorable symposium hosted by the Académie des Sciences (https://sbcf.fr/en/event/symposium-des-40-ans-de-la-sbcf/) on September 10, 2024.

3.
Biol Cell ; 115(7): e2300001, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37095727

RESUMEN

BACKGROUND INFORMATION: Phagocytosis is the mechanism of the internalization of large particles, microorganisms and cellular debris. The complement pathway represents one of the first mechanisms of defense against infection and the complement receptor 3 (CR3), which is highly expressed on macrophages, is a major receptor for many pathogens and debris. Key to dissecting the mechanisms by which CR3-mediated phagocytosis occurs, is understanding how the complex actin binding protein machinery and associated regulators interact with actin during phagocytosis, from triggering of receptor, through to phagosome formation and closure. RESULTS: Here, we reveal that Dynamin-2 is recruited concomitantly with polymerized actin at the phagocytic cup and during phagosome formation and closure. Inhibition of Dynamin activity leads to stalled phagocytic cups and a decrease in the amount of F-actin at the site of phagocytosis. CONCLUSIONS: Dynamin-2 regulates the assembly of the F-actin phagocytic cup for successful CR3-mediated phagocytosis. SIGNIFICANCE: These results highlight an important role for Dynamin-2 in actin remodeling downstream of integrins.


Asunto(s)
Actinas , Dinamina II , Actinas/metabolismo , Dinamina II/metabolismo , Fagocitosis , Macrófagos , Proteínas Portadoras/metabolismo , Receptores de Complemento/metabolismo
4.
J Neuroinflammation ; 19(1): 307, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539803

RESUMEN

BACKGROUND: Zika virus (ZIKV) infection at postnatal or adult age can lead to neurological disorders associated with cognitive defects. Yet, how mature neurons respond to ZIKV remains substantially unexplored. METHODS: The impact of ZIKV infection on mature neurons and microglia was analyzed at the molecular and cellular levels, in vitro using immunocompetent primary cultured neurons and microglia, and in vivo in the brain of adult immunocompetent mice following intracranial ZIKV inoculation. We have used C57BL/6 and the genetically diverse Collaborative Cross mouse strains, displaying a broad range of susceptibility to ZIKV infection, to question the correlation between the effects induced by ZIKV infection on neurons and microglia and the in vivo susceptibility to ZIKV. RESULTS: As a result of a delayed induction of interferon beta (IFNB) expression and response, infected neurons displayed an inability to stop ZIKV replication, a trait that was further increased in neurons from susceptible mice. Alongside with an enhanced expression of ZIKV RNA, we observed in vivo, in the brain of susceptible mice, an increased level of active Iba1-expressing microglial cells occasionally engulfing neurons and displaying a gene expression profile close to the molecular signature of disease-associated microglia (DAM). In vivo as well as in vitro, only neurons and not microglial cells were identified as infected, raising the question of the mechanisms underlying microglia activation following brain ZIKV infection. Treatment of primary cultured microglia with conditioned media from ZIKV-infected neurons demonstrated that type-I interferons (IFNs-I) secreted by neurons late after infection activate non-infected microglial cells. In addition, ZIKV infection induced pathological phosphorylation of Tau (pTau) protein, a hallmark of neurodegenerative tauopathies, in vitro and in vivo with clusters of neurons displaying pTau surrounded by active microglial cells. CONCLUSIONS: We show that ZIKV-infected mature neurons display an inability to stop viral replication in link with a delayed IFNB expression and response, while signaling microglia for activation through IFNs-I secreted at late times post-infection. In the brain of ZIKV-infected susceptible mice, uninfected microglial cells adopt an active morphology and a DAM expression profile, surrounding and sometimes engulfing neurons while ZIKV-infected neurons accumulate pTau, overall reflecting a tauopathy-like phenotype.


Asunto(s)
Tauopatías , Infección por el Virus Zika , Virus Zika , Ratones , Animales , Infección por el Virus Zika/metabolismo , Virus Zika/genética , Interferón beta/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Tauopatías/patología , Replicación Viral , Fenotipo
5.
EMBO Rep ; 21(1): e47963, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31721415

RESUMEN

Human rhinovirus is a causative agent of severe exacerbations of chronic obstructive pulmonary disease (COPD). COPD is characterised by an increased number of alveolar macrophages with diminished phagocytic functions, but how rhinovirus infection affects macrophage function is still unknown. Here, we describe that human rhinovirus 16 impairs bacterial uptake and receptor-mediated phagocytosis in macrophages. The stalled phagocytic cups contain accumulated F-actin. Interestingly, we find that human rhinovirus 16 downregulates the expression of Arpin, a negative regulator of the Arp2/3 complex. Importantly, re-expression of the protein rescues defective internalisation in human rhinovirus 16-treated cells, demonstrating that Arpin is a key factor targeted to impair phagocytosis. We further show that Arpin is required for efficient uptake of multiple targets, for F-actin cup formation and for successful phagosome completion in macrophages. Interestingly, Arpin is recruited to sites of membrane extension and phagosome closure. Thus, we identify Arpin as a central actin regulator during phagocytosis that it is targeted by human rhinovirus 16, allowing the virus to perturb bacterial internalisation and phagocytosis in macrophages.


Asunto(s)
Fagocitosis , Rhinovirus , Proteínas Portadoras , Humanos , Macrófagos , Macrófagos Alveolares , Fagosomas
6.
J Immunol ; 205(9): 2499-2510, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32978282

RESUMEN

Glycosylation with O-linked ß-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.


Asunto(s)
Acetilglucosamina/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Células RAW 264.7
7.
J Immunol ; 205(3): 608-618, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32580933

RESUMEN

Dendritic cells (DCs) are professional APCs, which sample Ags in the periphery and migrate to the lymph node where they activate T cells. DCs can also present native Ag to B cells through interactions observed both in vitro and in vivo. However, the mechanisms of Ag transfer and B cell activation by DCs remain incompletely understood. In this study, we report that murine DCs are an important cell transporter of Ag from the periphery to the lymph node B cell zone and also potent inducers of B cell activation both in vivo and in vitro. Importantly, we highlight a novel extracellular mechanism of B cell activation by DCs. In this study, we demonstrate that Ag released upon DC regurgitation is sufficient to efficiently induce early B cell activation, which is BCR driven and mechanistically dependent on the nuclear accumulation of the transcription factor NF-κB/cRel. Thus, our study provides new mechanistic insights into Ag delivery and B cell activation modalities by DCs and a promising approach for targeting NF-κB/cRel pathway to modulate the DC-elicited B cell responses.


Asunto(s)
Presentación de Antígeno , Antígenos/inmunología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos , FN-kappa B/inmunología , Proteínas Proto-Oncogénicas c-rel/inmunología , Transducción de Señal/inmunología , Animales , Antígenos/genética , Femenino , Ratones , Ratones Transgénicos , FN-kappa B/genética , Proteínas Proto-Oncogénicas c-rel/genética
8.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33087469

RESUMEN

Rift Valley fever virus (RVFV) is a highly pathogenic zoonotic arbovirus endemic in many African countries and the Arabian Peninsula. Animal infections cause high rates of mortality and abortion among sheep, goats, and cattle. In humans, an estimated 1 to 2% of RVFV infections result in severe disease (encephalitis, hepatitis, or retinitis) with a high rate of lethality when associated with hemorrhagic fever. The RVFV NSs protein, which is the main virulence factor, counteracts the host innate antiviral response to favor viral replication and spread. However, the mechanisms underlying RVFV-induced cytopathic effects and the role of NSs in these alterations remain for the most part unknown. In this work, we have analyzed the effects of NSs expression on the actin cytoskeleton while conducting infections with the NSs-expressing virulent (ZH548) and attenuated (MP12) strains of RVFV and the non-NSs-expressing avirulent (ZH548ΔNSs) strain, as well as after the ectopic expression of NSs. In macrophages, fibroblasts, and hepatocytes, NSs expression prevented the upregulation of Abl2 (a major regulator of the actin cytoskeleton) expression otherwise induced by avirulent infections and identified here as part of the antiviral response. The presence of NSs was also linked to an increased mobility of ZH548-infected cells compared to ZH548ΔNSs-infected fibroblasts and to strong changes in cell morphology in nonmigrating hepatocytes, with reduction of lamellipodia, cell spreading, and dissolution of adherens junctions reminiscent of the ZH548-induced cytopathic effects observed in vivo Finally, we show evidence of the presence of NSs within long actin-rich structures associated with NSs dissemination from NSs-expressing toward non-NSs-expressing cells.IMPORTANCE Rift Valley fever virus (RVFV) is a dangerous human and animal pathogen that was ranked by the World Health Organization in 2018 as among the eight pathogens of most concern for being likely to cause wide epidemics in the near future and for which there are no, or insufficient, countermeasures. The focus of this work is to address the question of the mechanisms underlying RVFV-induced cytopathic effects that participate in RVFV pathogenicity. We demonstrate here that RVFV targets cell adhesion and the actin cytoskeleton at the transcriptional and cellular level, affecting cell mobility and inducing cell shape collapse, along with distortion of cell-cell adhesion. All these effects may participate in RVFV-induced pathogenicity, facilitate virulent RVFV dissemination, and thus constitute interesting potential targets for future development of antiviral therapeutic strategies that, in the case of RVFV, as with several other emerging arboviruses, are presently lacking.


Asunto(s)
Citoesqueleto de Actina/genética , Proteínas Tirosina Quinasas/genética , Fiebre del Valle del Rift/patología , Virus de la Fiebre del Valle del Rift/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular , Línea Celular , Movimiento Celular , Forma de la Célula , Interacciones Huésped-Patógeno , Inmunidad Innata , Ratones , Mutación , Proteínas Tirosina Quinasas/metabolismo , Fiebre del Valle del Rift/metabolismo , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/metabolismo , Proteínas no Estructurales Virales/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Replicación Viral
9.
FASEB J ; 33(10): 11606-11614, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31242766

RESUMEN

Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (Caenorhabditis elegans/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow-derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin-rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.-Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavölgyi, É., Szondy, Z., Budai, Z., Orbán, T. I., Sándor, S., Mehta, A., Bajtay, Z., Kovács, T., Jung, S. Y., Afaq Shakir, M., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takács-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Nucleósido Difosfato Quinasas NM23/metabolismo , Fagocitosis/fisiología , Actinas/metabolismo , Animales , Apoptosis/fisiología , Caenorhabditis elegans/metabolismo , Células Cultivadas , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Transducción de Señal/fisiología
10.
Traffic ; 17(5): 487-99, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26847957

RESUMEN

Phagocytosis is a mechanism used by macrophages to internalize and eliminate microorganisms or cellular debris. It relies on profound rearrangements of the actin cytoskeleton that is the driving force allowing plasma membrane extension around the particle. The closure step of phagocytosis, however, remains poorly defined. We used a dedicated experimental setup with Total Internal Reflection Fluorescence Microscopy (TIRFM) to monitor phagosome formation and closure in three dimensions in living cells. We show that dynamin-2, which mediates the scission of endocytic vesicles, was recruited early and concomitantly with actin during phagosome formation. Dynamin-2 accumulated at the site of phagosome closure in living macrophages. Inhibition of its activity with dominant negative mutants or drugs demonstrated that dynamin-2 is implicated in actin dynamics and pseudopod extension. Depolymerization of actin led to impaired dynamin-2 recruitment or activity. Finally, we show that dynamin-2 plays a critical role in the effective scission of the phagosome from the plasma membrane. Thus, we establish that a cross talk between actin and dynamin takes place for phagosome formation and closure before dynamin functions for scission.


Asunto(s)
Actinas/metabolismo , Dinaminas/metabolismo , Fagosomas/metabolismo , Fagocitosis
11.
Biol Cell ; 109(9): 339-353, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28758675

RESUMEN

Twenty years ago, a group of French cell biologists merged two scientific clubs with the aim of bringing together researchers in the fields of Endocytosis and Exocytosis. Founded in 1997, the first annual meeting of the Exocytosis Club was held in 1998. The Endocytosis Club held quarterly meetings from its founding in 1999. The first joint annual meeting of the Exocytosis-Endocytosis Club took place in Paris in April, 2001. What started as a modest gathering of enthusiastic scientists working in the field of cell trafficking has gone from strength to strength, rapidly becoming an unmissable yearly meeting, vividly demonstrating the high quality of science performed in our community and beyond. On the occasion of the 20th meeting of our club, we want to provide historic insight into the fields of exocytosis and endocytosis, and by extension, to subcellular trafficking, highlighting how French scientists have contributed to major advances in these fields. Today, the Exocytosis-Endocytosis Club represents a vibrant and friendly community that will hold its 20th meeting at the Presqu'Ile de Giens, near Toulon in the South of France, on May 11-13, 2017.


Asunto(s)
Endocitosis , Exocitosis , Animales , Membrana Celular/metabolismo , Clatrina/metabolismo , Humanos , Lisosomas/metabolismo , Ubiquitina/metabolismo
12.
Traffic ; 14(4): 355-64, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23331933

RESUMEN

Eukaryotic cells with specialized functions often use and adapt common molecular machineries. Recent findings have highlighted that actin polymerization, contractile activity and membrane remodelling with exocytosis of internal compartments are required both for successful phagocytosis, the internalization of particulate material and for cytokinesis, the last step of cell division. Phagocytosis is induced by the triggering of specific cell surface receptors, which leads to membrane deformation, pseudopod extension and contraction to engulf particles. Cytokinesis relies on intense contractile activity and eventually leads to the physical scission of sister cells. In this review, shared features of signalling, cytoskeletal reorganization and vesicular trafficking used in both phagocytosis and cytokinesis will be described, but non-common mechanisms and questions that remain open in these dynamic areas of research are also highlighted.


Asunto(s)
Citocinesis , Fagocitosis , Citoesqueleto de Actina/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Microtúbulos/metabolismo , Transducción de Señal , Vesículas Transportadoras/metabolismo
13.
Blood ; 119(1): 95-105, 2012 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-22049514

RESUMEN

B lymphocytes can be triggered in lymph nodes by nonopsonized antigens (Ag), potentially in their native form. However, the mechanisms that promote encounter of B lymphocytes with unprocessed antigens in lymph nodes are still elusive. We show here that antigens are detected in B cells in the draining lymph nodes of mice injected with live, but not fixed, dendritic cells (DCs) loaded with antigens. This highlights active processes in DCs to promote Ag transfer to B lymphocytes. In addition, antigen-loaded DCs found in the draining lymph node were CD103+. Using 3 different model Ag, we then show that immature DCs efficiently take up Ag by macropinocytosis and store the internalized material in late endocytic compartments. We find that DCs have a unique ability to release antigens from these compartments in the extracellular medium, which is controlled by Rab27. B cells take up the regurgitated Ag and the chemokine CXCL13, essential to attract B cells in lymph nodes, enhances this transfer. Our results reveal a unique property of DCs to regurgitate unprocessed Ag that could play an important role in B-cell activation.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Pinocitosis/inmunología , Animales , Antígenos CD/metabolismo , Linfocitos B/metabolismo , Western Blotting , Células Cultivadas , Quimiocina CXCL13/metabolismo , Células Dendríticas/metabolismo , Citometría de Flujo , Humanos , Cadenas alfa de Integrinas/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL
14.
ACS Appl Mater Interfaces ; 16(8): 9669-9679, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349191

RESUMEN

Cell adhesion is a central process in cellular communication and regulation. Adhesion sites are triggered by specific ligand-receptor interactions inducing the clustering of both partners at the contact point. Investigating cell adhesion using microscopy techniques requires targeted fluorescent particles with a signal sensitive to the clustering of receptors and ligands at the interface. Herein, we report on simple cell or bacterial mimics, based on liquid microparticles made of lipiodol functionalized with custom-designed fluorescent lipids. These lipids are targeted toward lectins or biotin membrane receptors, and the resulting particles can be specifically identified and internalized by cells, as demonstrated by their phagocytosis in primary murine bone marrow-derived macrophages. We also evidence the possibility to sense the binding of a multivalent lectin, concanavalin A, in solution by monitoring the energy transfer between two matching fluorescent lipids on the surface of the particles. We anticipate that these liquid particle-based sensors, which are able to report via Förster resonance energy transfer (FRET) on the movement of ligands on their interface upon protein binding, will provide a useful tool to study receptor binding and cooperation during adhesion processes such as phagocytosis.


Asunto(s)
Biomimética , Transferencia Resonante de Energía de Fluorescencia , Animales , Ratones , Transferencia Resonante de Energía de Fluorescencia/métodos , Unión Proteica , Glucolípidos , Lectinas/metabolismo , Ligandos , Colorantes
15.
J Virol ; 86(9): 4856-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22345475

RESUMEN

HIV-1 Nef is essential for AIDS pathogenesis, but this viral protein is not targeted by antiviral strategies. The functions of Nef are largely related to perturbations of intracellular trafficking and signaling pathways through leucine-based and polyproline motifs that are required for interactions with clathrin-associated adaptor protein complexes and SH3 domain-containing proteins, such as the phagocyte-specific kinase Hck. We previously described a single-domain antibody (sdAb) targeting Nef and inhibiting many, but not all, of its biological activities. We now report a further development of this anti-Nef strategy through the demonstration of the remarkable inhibitory activity of artificial Nef ligands, called Neffins, comprised of the anti-Nef sdAb fused to modified SH3 domains. The Neffins inhibited all key activities of Nef, including Nef-mediated CD4 and major histocompatibility complex class I (MHC-I) cell surface downregulation and enhancement of virus infectivity. When expressed in T lymphocytes, Neffins specifically inhibited the Nef-induced mislocalization of the Lck kinase, which contributes to the alteration of the formation of the immunological synapse. In macrophages, Neffins inhibited the Nef-induced formation of multinucleated giant cells and podosome rosettes, and it counteracted the inhibitory activity of Nef on phagocytosis. Since we show here that these effects of Nef on macrophage and T cell functions were both dependent on the leucine-based and polyproline motifs, we confirmed that Neffins disrupted interactions of Nef with both AP complexes and Hck. These results demonstrate that it is possible to inhibit all functions of Nef, both in T lymphocytes and macrophages, with a single ligand that represents an efficient tool to develop new antiviral strategies targeting Nef.


Asunto(s)
Antivirales/metabolismo , VIH-1/metabolismo , Anticuerpos de Cadena Única/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Secuencia de Aminoácidos , Antígenos CD4/metabolismo , Línea Celular , Regulación hacia Abajo/inmunología , Orden Génico , VIH-1/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Macrófagos/metabolismo , Datos de Secuencia Molecular , Fagocitosis/inmunología , Unión Proteica/inmunología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología , Factor de Transcripción AP-1/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Dominios Homologos src/genética , Dominios Homologos src/inmunología
16.
Med Sci (Paris) ; 29(11): 1004-9, 2013 Nov.
Artículo en Francés | MEDLINE | ID: mdl-24280504

RESUMEN

Eukaryotic cells use and adapt common molecular machineries. Recent findings have highlighted that actin polymerization, contractile activity and membrane remodelling with exocytosis of internal compartments are required both for successful phagocytosis, the internalization of particulate material and for cytokinesis, the last step of cell division. Phagocytosis is induced by the triggering of specific cell surface receptors, which leads to membrane deformation, pseudopod extension and contraction to engulf particles. Cytokinesis relies on intense contractile activity and eventually leads to the physical scission of sister cells. In this review, shared features of signalling, cytoskeletal reorganization and vesicular trafficking used in both phagocytosis and cytokinesis are described, and questions that remain open in these dynamic areas of research are also highlighted.


Asunto(s)
Citocinesis/fisiología , Fagocitosis/fisiología , Actinas/fisiología , Membrana Celular/fisiología , Citoesqueleto/fisiología , Células Eucariotas/fisiología , Exocitosis , GTP Fosfohidrolasas/fisiología , Lípidos de la Membrana/fisiología , Microtúbulos , Receptores de Superficie Celular/fisiología , Transducción de Señal
17.
Blood ; 115(21): 4226-36, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20299515

RESUMEN

Phagocytosis in macrophages is receptor mediated and relies on actin polymerization coordinated with the focal delivery of intracellular membranes that is necessary for optimal phagocytosis of large particles. Here we show that phagocytosis by various receptors was inhibited in primary human macrophages infected with wild-type HIV-1 but not with a nef-deleted virus. We observed no major perturbation of F-actin accumulation, but adaptor protein 1 (AP1)-positive endosome recruitment was inhibited in HIV-1-infected cells. Expression of negative factor (Nef) was sufficient to inhibit phagocytosis, and myristoylation as well as the LL and DD motifs involved in association of Nef with AP complexes were important for this inhibition. We observed that Nef interferes with AP1 in association with membranes and/or with a cleaved regulatory form of AP1. Finally, an alteration of the recruitment of vesicle-associated membrane protein (VAMP3)- and tumor necrosis factor-alpha (TNFalpha)-positive recycling endosomes regulated by AP1, but not of VAMP7-positive late endosomes, was observed in phagocytic cups of HIV-1-infected macrophages. We conclude that HIV-1 impairs optimal phagosome formation through Nef-dependent perturbation of the endosomal remodeling relying on AP1. We therefore identified a mechanism of macrophage function down-regulation in infected cells.


Asunto(s)
VIH-1/fisiología , VIH-1/patogenicidad , Macrófagos/inmunología , Macrófagos/virología , Fagocitosis/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Actinas/metabolismo , Complejo 1 de Proteína Adaptadora/metabolismo , Animales , Compartimento Celular , Línea Celular , Endosomas/metabolismo , Eliminación de Gen , Genes nef , VIH-1/genética , Humanos , Técnicas In Vitro , Macrófagos/fisiología , Ratones , Modelos Biológicos , Proteínas R-SNARE/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
18.
FASEB J ; 25(1): 337-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20881209

RESUMEN

AMP-activated protein kinase (AMPK) is an αßγ heterotrimer conserved throughout evolution and important for energy sensing in all eukaryote cells. AMPK controls metabolism and various cellular events in response to both hormones and changes in cellular energy status. The γ subunit senses intracellular energy status through the competitive binding of AMP and ATP. We show here that targeted disruption of the mouse AMPKγ1 gene (Prkag1) causes regenerative hemolytic anemia by increasing the sequestration of abnormal erythrocytes. Prkag1(-/-) mice displayed splenomegaly and iron accumulation due to compensatory splenic erythropoiesis and erythrophagocytosis. Moreover, AMPKγ1-deficient erythrocytes were highly resistant to osmotic hemolysis and poorly deformable in response to increasing shear stress, consistent with greater membrane rigidity. No change in cytoskeletal protein composition was observed; however, the phosphorylation level of adducin, a protein promoting the binding of spectrin to actin, was higher in AMPKγ1-deficient erythrocytes. Together, these results demonstrate that AMPKγ1 subunit is required for the maintenance of erythrocyte membrane elasticity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Anemia/enzimología , Membrana Eritrocítica/metabolismo , Esplenomegalia/enzimología , Proteínas Quinasas Activadas por AMP/genética , Anemia/sangre , Anemia/genética , Anemia Hemolítica/enzimología , Anemia Hemolítica/genética , Animales , Western Blotting , Elasticidad , Eritroblastos/metabolismo , Eritroblastos/patología , Recuento de Eritrocitos , Deformación Eritrocítica , Femenino , Hiperplasia , Hierro/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/metabolismo , Bazo/patología , Esplenomegalia/sangre , Esplenomegalia/genética
19.
J Immunol ; 184(12): 7030-9, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20488787

RESUMEN

Macrophages are a major target of HIV-1 infection. HIV-1-infected macrophages form multinucleated giant cells (MGCs) using poorly elucidated mechanisms. In this study, we show that MGC formation was reduced when human macrophages were infected with nef-deleted HIV-1. Moreover, expression of Nef, an HIV-1 protein required in several aspects of AIDS, was sufficient to trigger the formation of MGCs in RAW264.7 macrophages. Among Nef molecular determinants, myristoylation was dispensable, whereas the polyproline motif was instrumental for this phenomenon. Nef has been shown to activate hematopoietic cell kinase (Hck), a Src tyrosine kinase specifically expressed in phagocytes, through a well-described polyproline-SH3 interaction. Knockdown approaches showed that Hck is involved in Nef-induced MGC formation. Hck is expressed as two isoforms located in distinct subcellular compartments. Although both isoforms were activated by Nef, only p61Hck mediated the effect of Nef on macrophage fusion. This process was abolished in the presence of a p61Hck kinase-dead mutant or when p61Hck was redirected from the lysosome membrane to the cytosol. Finally, lysosomal proteins including vacuolar adenosine triphosphatase and proteases participated in Nef-induced giant macrophage formation. We conclude that Nef participates in HIV-1-induced MGC formation via a p61Hck- and lysosomal enzyme-dependent pathway. This work identifies for the first time actors of HIV-1-induced macrophage fusion, leading to the formation of MGCs commonly found in several organs of AIDS patients.


Asunto(s)
Productos del Gen nef/metabolismo , Células Gigantes/virología , Infecciones por VIH/metabolismo , Macrófagos/virología , Proteínas Proto-Oncogénicas c-hck/metabolismo , Animales , Línea Celular , Productos del Gen nef/inmunología , Células Gigantes/inmunología , Células Gigantes/metabolismo , Infecciones por VIH/inmunología , Humanos , Immunoblotting , Isoenzimas , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microscopía Fluorescente , Proteínas Proto-Oncogénicas c-hck/inmunología
20.
Front Immunol ; 13: 982839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131918

RESUMEN

The secreted enzyme interleukin four-induced gene 1 (IL4I1) is involved in the negative control of the adaptive immune response. IL4I1 expression in human cancer is frequent and correlates with poor survival and resistance to immunotherapy. Nevertheless, its mechanism of action remains partially unknown. Here, we identified transmembrane serine protease 13 (TMPRSS13) as an immune cell-expressed surface protein that binds IL4I1. TMPRSS13 is a paralog of TMPRSS2, of which the protease activity participates in the cleavage of SARS-CoV-2 spike protein and facilitates virus induced-membrane fusion. We show that TMPRSS13 is expressed by human lymphocytes, monocytes and monocyte-derived macrophages, can cleave the spike protein and allow SARS-CoV-2 spike pseudotyped virus entry into cells. We identify regions of homology between IL4I1 and spike and demonstrate competition between the two proteins for TMPRSS13 binding. These findings may be relevant for both interfering with SARS-CoV-2 infection and limiting IL4I1-dependent immunosuppressive activity in cancer.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Interleucinas , L-Aminoácido Oxidasa , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA