RESUMEN
Coppice abandonment had negative consequences for biodiversity of forest vegetation and several groups of invertebrates. Most coppicing restoration studies have focused only on a single trophic level despite the fact that ecosystems are characterized by interactions between trophic levels represented by various groups of organisms. To address the patterns of functional diversity in the perspective of coppicing restoration, we studied the short-term effects of conservation-motivated tree canopy thinning in an abandoned coppice-with-standards in Central Europe, a region where such attempts have been rare so far. The functional diversity of vascular plants and spiders, chosen as two model trophic groups within a forest ecosystem, was compared between thinned and control forest patches. To characterize functional patterns, we examined several functional traits. These traits were assigned into two contrasting categories: response traits reflecting a change of environment (for both vascular plants and spiders) and effect traits influencing the ecosystem properties (only for vascular plants). Functional diversity was analysed by CCA using two measures: community-weighted means (CWM) and Rao's quadratic diversity (RaoQ). CCA models revealed that the canopy thinning had a positive effect on diversity of the response traits of both trophic groups and negatively influenced the diversity of effect traits. In addition, we found distinct seasonal dynamics in functional diversity of the spider communities, which was probably linked to leaf phenology of deciduous trees and therefore an effect trait not directly examined in this study. We conclude that canopy thinning affected functional diversity across trophic groups during the initial phase of coppicing restoration. With necessary precautions, careful canopy thinning can be effectively applied in the restoration of functional diversity in abandoned coppices.
RESUMEN
Pesticide residues are an important topic in many environmental studies, but little is known about the effects of pesticide residues of different ages on beneficial arthropods. Therefore, in this study the activity of residues of three different ages of several commonly used insecticides on the behaviour and mortality of European earwigs was evaluated in the laboratory and the effect of the insecticides was verified in the field. All residues of the biorational SpinTor® (spinosad), Radiant SC (spinetoram), and the conventional Steward® (indoxacarb) showed significantly faster mortality progression compared to the control in the laboratory. All the Steward® residues caused a significant wave of erratic behaviour as the earwigs went through a deep and relatively long moribund stage and resurrected. We verified the effects of SpinTor® and Steward® on changes in earwig abundance and their behaviour in the orchard. Earwigs abundance was significantly lower 16 days after application of biorational SpinTor® and conventional Steward® which had a significantly more pronounced and longer lasting effect. The earwig population stabilised by day 53 after the insecticide applications. Field applications of insecticides had no effect on earwig behaviour and sex ratio. Our results show that older residues have a negative effect on European earwigs equal to that of fresh residues, although their degradation should occur. It is interesting to note that biorational insecticides may not be safer than chemical insecticides.
Asunto(s)
Insecticidas , Residuos de Plaguicidas , Animales , Insecticidas/toxicidad , Insectos , Residuos de Plaguicidas/toxicidad , Auricularia , Conducta PredatoriaRESUMEN
Glyphosate-based herbicides are the world's most consumed agrochemicals, and they are commonly used in various agroecosystems, including forests, as well as in urban zones and gardens. These herbicides are sold as formulations containing adjuvants. Other tank-mixing adjuvants (most often surfactants) are commonly added to these formulations prior to application. According to the manufacturers of agrochemicals, such tank mixes (as these are known in agronomic and horticultural practice) have modified properties and perform better than do the herbicides as used alone. The effects of these tank mixes on the environment and on beneficial arthropods are almost unknown. Therefore, we studied whether a herbicide formulation mixed with adjuvant has modified effects on one of the most common genera of ground-dwelling wolf spiders vis-à-vis the herbicide formulation and adjuvants themselves. Specifically, we studied the synergistic effect in the laboratory on the predatory activity (represented by the number of killed flies) of wolf spiders in the genus Pardosa after direct treatment using the glyphosate-based herbicide formulation Roundup klasik Pro®, Roundup klasik Pro® in a mixture with the surfactant Wetcit®, Roundup klasik Pro® in a mixture with the surfactant Agrovital®, and the surfactants alone. We found that pure surfactants as well as herbicide-and-surfactants tank mixes significantly decrease the predatory activity of Pardosa spiders in the short term even as Roundup klasik Pro® did not itself have any such effect. Our results support the hypothesis that plant protection tank mixes may have modified effect on beneficial arthropods as compared to herbicide formulations alone. Therefore, testing of pesticide tank mixes is highly important, because it is these tank mixes that are actually applied to the environment.
Asunto(s)
Agroquímicos/toxicidad , Glicina/análogos & derivados , Herbicidas/toxicidad , Arañas/efectos de los fármacos , Tensoactivos/toxicidad , Animales , Artrópodos/efectos de los fármacos , Glicina/toxicidad , Plaguicidas/farmacología , Pruebas de Toxicidad , GlifosatoRESUMEN
In addition to their active ingredients, pesticides contain also additives - surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems.