Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 91(6): 3902-3911, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30768891

RESUMEN

Processed Animal Proteins (PAPs) are considered as a sustainable protein source to improve the nutritional profile of feed for livestock and aquaculture. However, the use of these proteins is strongly regulated since the bovine spongiform encephalopathy (BSE) crisis. The reintroduction of nonruminant PAPs for use in aquaculture in 2013 has driven the need for alternative analytical methods to determine the species origin as well as the tissue source (legal or not). The current official methods, light microscopy and polymerase chain reaction, do not fulfill these requirements. Furthermore, future methods need to be quantitative, because the pending zero-tolerance-concept is planned to be replaced by accurate thresholds. Here, we developed a 7-plex mass spectrometry-based immunoassay that is capable of quantifying 0.1% (w/w) ruminant PAP in feed in a tissue- and species-specific way. The workflow comprises a 2 h tryptic digestion of PAPs in suspension, an immunoaffinity enrichment of peptides, and LC-MS/MS-based quantification. In combination with a previously published assay for species identification, we were able to confirm the species and tissue origin of six ring trial samples obtained in former PCR and microscopy proficiency tests. The sensitive, quantitative, species- and tissue-specific character of the developed assays meets the requirements for new methods for PAP detection and can be used in future feed authentication studies.


Asunto(s)
Alimentación Animal/análisis , Proteínas en la Dieta/análisis , Manipulación de Alimentos/legislación & jurisprudencia , Inmunoensayo/métodos , Espectrometría de Masas , Animales , Bovinos , Carne/análisis , Especificidad de Órganos , Especificidad de la Especie
2.
Anal Chem ; 90(6): 4135-4143, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29470057

RESUMEN

The ban of processed animal proteins (PAPs) in feed for farmed animals introduced in 2001 was one of the main EU measures to control the bovine spongiform encephalopathy (BSE) crisis. Currently, microscopy and polymerase chain reaction (PCR) are the official methods for the detection of illegal PAPs in feed. However, the progressive release of the feed ban, recently with the legalization of nonruminant PAPs for the use in aquaculture, requires the development of alternative methods to determine the species origin and the source (legal or not). Additionally, discussions about the need for quantitative tests came up, particularly if the zero-tolerance-concept is replaced by introducing PAP thresholds. To address this issue, we developed and partially validated a multiplex mass spectrometry-based immunoassay to quantify ruminant specific peptides in vegetal cattle feed. The workflow comprises a new sample preparation procedure based on a tryptic digestion of PAPs in suspension, a subsequent immunoaffinity enrichment of the released peptides, and a LC-MS/MS-based analysis for peptide quantification using isotope labeled standard peptides. For the very first time, a mass spectrometry-based method is capable of detecting and quantifying illegal PAPs in animal feed over a concentration range of 4 orders of magnitude with a detection limit in the range of 0.1% to 1% (w/w).


Asunto(s)
Alimentación Animal/análisis , Contaminación de Alimentos/análisis , Péptidos/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Proteínas Sanguíneas/análisis , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Inmunoensayo/métodos , Carne/análisis , Proteínas de la Carne/análisis , Proteínas de la Leche/análisis , Porcinos
3.
J Proteome Res ; 16(11): 4020-4034, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28929768

RESUMEN

The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.


Asunto(s)
Nanopartículas del Metal/análisis , Corona de Proteínas/análisis , Plata , Células CACO-2 , Humanos , Espectrometría de Masas , Nanopartículas del Metal/toxicidad , Proteómica , Plata/toxicidad , Transcriptoma
4.
J Agric Food Chem ; 66(39): 10327-10335, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30222351

RESUMEN

With the reintroduction of nonruminant processed animal proteins (PAPs) for use in aquaculture in 2013, there is a suitable alternative to replace expensive fish meal in fish feed. Nevertheless, since the bovine spongiform encephalopathy (BSE) crisis, the use of PAPs in feed is strictly regulated. To date, light microscopy and polymerase chain reaction are the official methods for proving the absence of illegal PAPs in feed. Due to their limitations, alternative methods for the quantitative species differentiation are needed. To address this issue, we developed and validated an 8-plex mass spectrometry-based immunoassay. The workflow comprises a tryptic digestion of PAPs and blood products in suspension, a cross-species immunoaffinity enrichment of 8 species-specific alpha-2-macroglobulin peptides using a group-specific antibody, and a subsequent analysis by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry for species identification and quantification. This workflow can be used to quantitatively determine the species origin in future feed authentication studies.


Asunto(s)
Alimentación Animal/análisis , Proteínas Sanguíneas/química , Inmunoensayo/métodos , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Animales , Bovinos , Pollos , Análisis Discriminante , Patos , Peces , Caballos , Porcinos
5.
Food Chem Toxicol ; 97: 327-335, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27523291

RESUMEN

Silver nanoparticles are advertised as antimicrobial agents in a wide range of products. The majority of available studies suggest that silver nanoparticle toxicity is mainly caused by silver ions released from the particles. However, it remains challenging to distinguish between the effect of silver nanoparticles and silver ions. Here we used a combination of a short-term in vivo study in rats and an in silico-based toxicokinetic model to determine tissue distribution of administered ionic and nanoparticulate silver, and to estimate mixture ratios of the different silver species, namely primary nanoparticles, ions and secondary particles. Our data indicate that silver nanoparticles and silver ions are not or only marginally bioavailable after oral ingestion of a single, non-toxic dose. Experimental data on organ distribution after intravenous injection were accurately reflected by the predictions of the in silico model. Toxicokinetic modeling suggests systemic distribution of a major proportion of the injected ionic silver as de novo formed secondary nanoparticles, and the presence of such particles was proven by electron microscopy. The observation that silver ions form secondary particles, underlines the difficulties in distinguishing between particle- and ion-dependent effects of silver nanoparticles.


Asunto(s)
Nanopartículas del Metal/administración & dosificación , Plata/farmacocinética , Animales , Simulación por Computador , Iones , Masculino , Modelos Teóricos , Especificidad de Órganos , Ratas , Ratas Wistar , Plata/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA