Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 41(50): 10247-10260, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34759029

RESUMEN

Axon regeneration after spinal cord injury (SCI) is limited by both a decreased intrinsic ability of neurons to grow axons and the growth-hindering effects of extrinsic inhibitory molecules expressed around the lesion. Deletion of phosphatase and tensin homolog (Pten) augments mechanistic target of rapamycin (mTOR) signaling and enhances the intrinsic regenerative response of injured corticospinal neurons after SCI. Because of the variety of growth-restrictive extrinsic molecules, it remains unclear how inhibition of conserved inhibitory signaling elements would affect axon regeneration and rewiring after SCI. Moreover, it remains unknown how a combinatorial approach to modulate both extrinsic and intrinsic mechanisms can enhance regeneration and rewiring after SCI. In the present study, we deleted RhoA and RhoC, which encode small GTPases that mediate growth inhibition signals of a variety of extrinsic molecules, to remove global extrinsic pathways. RhoA/RhoC double deletion in mice suppressed retraction or dieback of corticospinal axons after SCI. In contrast, Pten deletion increased regrowth of corticospinal axons into the lesion core. Although deletion of both RhoA and Pten did not promote axon regrowth across the lesion or motor recovery, it additively promoted rewiring of corticospinal circuits connecting the cerebral cortex, spinal cord, and hindlimb muscles. Our genetic findings, therefore, reveal that a combinatorial approach to modulate both intrinsic and extrinsic factors can additively promote neural circuit rewiring after SCI.SIGNIFICANCE STATEMENT SCI often causes severe motor deficits because of damage to the corticospinal tract (CST), the major neural pathway for voluntary movements. Regeneration of CST axons is required to reconstruct motor circuits and restore functions; however, a lower intrinsic ability to grow axons and extrinsic inhibitory molecules severely limit axon regeneration in the CNS. Here, we investigated whether suppression of extrinsic inhibitory cues by genetic deletion of Rho as well as enhancement of the intrinsic pathway by deletion of Pten could enable axon regrowth and rewiring of the CST after SCI. We show that simultaneous elimination of extrinsic and intrinsic signaling pathways can additively promote axon sprouting and rewiring of the corticospinal circuits. Our data demonstrate a potential molecular approach to reconstruct motor pathways after SCI.


Asunto(s)
Regeneración Nerviosa/fisiología , Fosfohidrolasa PTEN/metabolismo , Tractos Piramidales/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Proteínas de Unión al GTP rho/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Cereb Cortex ; 30(11): 5702-5716, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32564090

RESUMEN

Axon regeneration is limited in the central nervous system, which hinders the reconstruction of functional circuits following spinal cord injury (SCI). Although various extrinsic molecules to repel axons following SCI have been identified, the role of semaphorins, a major class of axon guidance molecules, has not been thoroughly explored. Here we show that expression of semaphorins, including Sema5a and Sema6d, is elevated after SCI, and genetic deletion of either molecule or their receptors (neuropilin1 and plexinA1, respectively) suppresses axon retraction or dieback in injured corticospinal neurons. We further show that Olig2+ cells are essential for SCI-induced semaphorin expression, and that Olig2 binds to putative enhancer regions of the semaphorin genes. Finally, conditional deletion of Olig2 in the spinal cord reduces the expression of semaphorins, alleviating the axon retraction. These results demonstrate that semaphorins function as axon repellents following SCI, and reveal a novel transcriptional mechanism for controlling semaphorin levels around injured neurons to create zones hostile to axon regrowth.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Semaforinas/biosíntesis , Traumatismos de la Médula Espinal/metabolismo , Animales , Axones/patología , Ratones , Ratones Endogámicos C57BL , Tractos Piramidales/lesiones , Tractos Piramidales/metabolismo , Traumatismos de la Médula Espinal/patología
3.
Neuropharmacology ; 238: 109597, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271281

RESUMEN

Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.


Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Humanos , Analgésicos Opioides/efectos adversos , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dolor/metabolismo , Analgésicos , Trastornos Relacionados con Opioides/epidemiología
4.
Neuron ; 109(8): 1274-1282.e6, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33667343

RESUMEN

Peripheral nerve injury induces long-term pro-inflammatory responses in spinal cord glial cells that facilitate neuropathic pain, but the identity of endogenous cells that resolve spinal inflammation has not been determined. Guided by single-cell RNA sequencing (scRNA-seq), we found that MRC1+ spinal cord macrophages proliferated and upregulated the anti-inflammatory mediator Cd163 in mice following superficial injury (SI; nerve intact), but this response was blunted in nerve-injured animals. Depleting spinal macrophages in SI animals promoted microgliosis and caused mechanical hypersensitivity to persist. Conversely, expressing Cd163 in spinal macrophages increased Interleukin 10 expression, attenuated micro- and astrogliosis, and enduringly alleviated mechanical and thermal hypersensitivity in nerve-injured animals. Our data indicate that MRC1+ spinal macrophages actively restrain glia to limit neuroinflammation and resolve mechanical pain following a superficial injury. Moreover, we show that spinal macrophages from nerve-injured animals mount a dampened anti-inflammatory response but can be therapeutically coaxed to promote long-lasting recovery of neuropathic pain.


Asunto(s)
Hiperalgesia/metabolismo , Macrófagos/fisiología , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Ratones , Nocicepción/fisiología , Dimensión del Dolor
5.
Nat Commun ; 11(1): 1962, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327659

RESUMEN

Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD+) with nicotinamide riboside partially blocked neurodegeneration, and increased the lifespan of Top1 cKO mice by 30%. A reduction of p53 also partially rescued cortical neuron loss. While neurodegeneration was partially rescued, behavioral decline was not prevented. These data indicate that reducing neuronal loss is not sufficient to limit behavioral decline when TOP1 function is disrupted.


Asunto(s)
ADN-Topoisomerasas de Tipo I/deficiencia , Inestabilidad Genómica , Enfermedades Neurodegenerativas/enzimología , Neuronas/enzimología , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Daño del ADN , ADN-Topoisomerasas de Tipo I/genética , Hipocampo/enzimología , Hipocampo/patología , Inflamación , Ratones , Ratones Noqueados , Mortalidad Prematura , Actividad Motora , Mutación , NAD/administración & dosificación , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Niacinamida/administración & dosificación , Niacinamida/análogos & derivados , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Compuestos de Piridinio
6.
PLoS One ; 14(6): e0217819, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31167004

RESUMEN

Subsets of small-diameter dorsal root ganglia (DRG) neurons detect pruritogenic (itch-causing) and algogenic (pain-causing) stimuli and can be activated or sensitized by chemical mediators. Many of these chemical mediators activate receptors that are coupled to lipid hydrolysis and diacylglycerol (DAG) production. Diacylglycerol kinase iota (DGKI) can phosphorylate DAG and is expressed at high levels in small-diameter mouse DRG neurons. Given the importance of these neurons in sensing pruritogenic and algogenic chemicals, we sought to determine if loss of DGKI impaired responses to itch- or pain-producing stimuli. Using male and female Dgki-knockout mice, we found that in vivo sensitivity to histamine-but not other pruritogens-was enhanced. In contrast, baseline pain sensitivity and pain sensitization following inflammatory or neuropathic injury were equivalent between wild type and Dgki-/- mice. In vitro calcium responses in DRG neurons to histamine was enhanced, while responses to algogenic ligands were unaffected by Dgki deletion. These data suggest Dgki regulates sensory neuron and behavioral responses to histamine, without affecting responses to other pruritogenic or algogenic agents.


Asunto(s)
Diacilglicerol Quinasa/deficiencia , Histamina/efectos adversos , Prurito/inducido químicamente , Prurito/enzimología , Animales , Conducta Animal , Calcio/farmacología , Diacilglicerol Quinasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nocicepción , Dolor/enzimología , Dolor/patología , Dolor/fisiopatología , Prurito/patología , Prurito/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
7.
Nat Commun ; 10(1): 134, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635555

RESUMEN

The development of the mammalian cerebral cortex depends on careful orchestration of proliferation, maturation, and migration events, ultimately giving rise to a wide variety of neuronal and non-neuronal cell types. To better understand cellular and molecular processes that unfold during late corticogenesis, we perform single-cell RNA-seq on the mouse cerebral cortex at a progenitor driven phase (embryonic day 14.5) and at birth-after neurons from all six cortical layers are born. We identify numerous classes of neurons, progenitors, and glia, their proliferative, migratory, and activation states, and their relatedness within and across age. Using the cell-type-specific expression patterns of genes mutated in neurological and psychiatric diseases, we identify putative disease subtypes that associate with clinical phenotypes. Our study reveals the cellular template of a complex neurodevelopmental process, and provides a window into the cellular origins of brain diseases.


Asunto(s)
Linaje de la Célula/genética , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Neocórtex/embriología , Animales , Secuencia de Bases , Línea Celular , Ciliopatías/genética , Femenino , Células HEK293 , Humanos , Masculino , Trastornos Mentales/genética , Ratones , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/genética , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células Madre/citología , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA