Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Mol Cell Cardiol ; 143: 63-70, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325152

RESUMEN

Our heart is comprised of many different cell types that all contribute to cardiac function. An important step in deciphering the molecular complexity of our heart is to decipher the molecular composition of the various cardiac cell types. Here we set out to delineate a comprehensive protein expression profile of the two most prevalent cell types in the heart: cardiomyocytes and cardiac fibroblasts. To this end, we isolated cardiomyocytes and fibroblasts from rat hearts and combined state-of-the-art flow cytometry with high-resolution mass spectrometry to investigate their proteome profiles right after isolation. We measured and quantified 5240 proteins in cardiomyocytes and 6328 proteins in cardiac fibroblasts. In addition to providing a global protein profile for these cardiac cell types, we also present specific findings, such as unique expression of ion channels and transcription factors for each cell type. For instance, we show that the sodium channel Scn7a and the cation channel Trpm7 are expressed in fibroblasts but not in cardiomyocytes, which underscores the importance of investigating the endogenous cell host prior to functional studies. Our dataset represents a valuable resource on protein expression profiles in these two primary cardiac cells types.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Células Cultivadas , Cromatografía Liquida , Perfilación de la Expresión Génica , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem , Transcriptoma
2.
J Physiol ; 598(2): 361-379, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31698505

RESUMEN

KEY POINTS: The large-pore channel pannexin 1 (Panx1) is expressed in many cell types and can open upon different, yet not fully established, stimuli. Panx1 permeability is often inferred from channel permeability to fluorescent dyes, but it is currently unknown whether dye permeability translates to permeability to other molecules. Cell shrinkage and C-terminal cleavage led to a Panx1 open-state with increased permeability to atomic ions (current), but did not alter ethidium uptake. Panx1 inhibitors affected Panx1-mediated ion conduction differently from ethidium permeability, and inhibitor efficiency towards a given molecule therefore cannot be extrapolated to its effects on the permeability of another. We conclude that ethidium permeability does not reflect equal permeation of other molecules and thus is no measure of general Panx1 activity. ABSTRACT: Pannexin 1 (Panx1) is a large-pore membrane channel connecting the extracellular milieu with the cell interior. While several activation regimes activate Panx1 in a variety of cell types, the selective permeability of an open Panx1 channel remains unresolved: does a given activation paradigm increase Panx1's permeability towards all permeants equally and does fluorescent dye flux serve as a proxy for biological permeation through an open channel? To explore permeant-selectivity of Panx1 activation and inhibition, we employed Panx1-expressing Xenopus laevis oocytes and HEK293T cells. We report that different mechanisms of activation of Panx1 differentially affected ethidium and atomic ion permeation. Most notably, C-terminal truncation or cell shrinkage elevated Panx1-mediated ion conductance, but had no effect on ethidium permeability. In contrast, extracellular pH changes predominantly affected ethidium permeability but not ionic conductance. High [K+ ]o did not increase the flux of either of the two permeants. Once open, Panx1 demonstrated preference for anionic permeants, such as Cl- , lactate and glutamate, while not supporting osmotic water flow. Panx1 inhibitors displayed enhanced potency towards Panx1-mediated currents compared to that of ethidium uptake. We conclude that activation or inhibition of Panx1 display permeant-selectivity and that permeation of ethidium does not necessarily reflect an equal permeation of smaller biological molecules and atomic ions.


Asunto(s)
Conexinas/fisiología , Canales Iónicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Animales , Colorantes Fluorescentes , Ácido Glutámico , Células HEK293 , Humanos , Ácido Láctico , Oocitos , Xenopus laevis
3.
J Biol Chem ; 294(45): 16789-16803, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31554662

RESUMEN

Connexin (Cx) gap junction channels comprise two hemichannels in neighboring cells, and their permeability is well-described, but permeabilities of the single Cx hemichannel remain largely unresolved. Moreover, determination of isoform-specific Cx hemichannel permeability is challenging because of concurrent expression of other channels with similar permeability profiles and inhibitor sensitivities. The mammalian Cx hemichannels Cx30 and Cx43 are gated by extracellular divalent cations, removal of which promotes fluorescent dye uptake in both channels but atomic ion conductance only through Cx30. To determine the molecular determinants of this difference, here we employed chimeras and mutagenesis of predicted pore-lining residues in Cx43. We expressed the mutated channels in Xenopus laevis oocytes to avoid background activity of alternative channels. Oocytes expressing a Cx43 hemichannel chimera containing the N terminus or the first extracellular loop from Cx30 displayed ethidium uptake and, unlike WT Cx43, ion conduction, an observation further supported by molecular dynamics simulations. Additional C-terminal truncation of the chimeric Cx43 hemichannel elicited an even greater ion conductance with a magnitude closer to that of Cx30. The inhibitory profile for the connexin hemichannels depended on the permeant, with conventional connexin hemichannel inhibitors having a higher potency toward the ion conductance pathway than toward fluorescent dye uptake. Our results demonstrate a permeant-dependent, isoform-specific inhibition of connexin hemichannels. They further reveal that the outer segments of the pore-lining region, including the N terminus and the first extracellular loop, together with the C terminus preclude ion conductance of the open Cx43 hemichannel.


Asunto(s)
Conexina 43/química , Conexina 43/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Simulación de Dinámica Molecular , Permeabilidad , Porosidad , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato
4.
J Biol Chem ; 292(49): 19999-20009, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-28982982

RESUMEN

Gap junctions confer interconnectivity of the cytoplasm in neighboring cells via docking of two connexons expressed in each of the adjacent membranes. Undocked connexons, referred to as hemichannels, may open and connect the cytoplasm with the extracellular fluid. The hemichannel configuration of connexins (Cxs) displays isoform-specific permeability profiles that are not directly determined by the size and charge of the permeant. To further explore Ca2+-mediated gating and permeability features of connexin hemichannels, we heterologously expressed Cx30 hemichannels in Xenopus laevis oocytes. The sensitivity toward divalent cation-mediated gating differed between small atomic ions (current) and fluorescent dye permeants, indicating that these permeants are distinctly gated. Three aspartate residues in Cx30 (Asp-50, Asp-172, and Asp-179) have been implicated previously in the Ca2+ sensitivity of other hemichannel isoforms. Although the aspartate at position Asp-50 was indispensable for divalent cation-dependent gating of Cx30 hemichannels, substitutions of the two other residues had no significant effect on gating, illustrating differences in the gating mechanisms between connexin isoforms. Using the substituted cysteine accessibility method (SCAM), we evaluated the role of possible pore-lining residues in the permeation of ions and ethidium through Cx30 hemichannels. Of the cysteine-substituted residues, interaction of a proposed pore-lining cysteine at position 37 with the positively charged compound [2-(trimethylammonium)ethyl] methane thiosulfonate bromide (MTS-ET) increased Cx30-mediated currents with unperturbed ethidium permeability. In summary, our results demonstrate that the permeability of hemichannels is regulated in a permeant-specific manner and underscores that hemichannels are selective rather than non-discriminating and freely diffusable pores.


Asunto(s)
Conexina 30/metabolismo , Uniones Comunicantes/fisiología , Activación del Canal Iónico , Sustitución de Aminoácidos , Animales , Canales de Calcio , Conexina 30/genética , Etidio/metabolismo , Humanos , Iones/metabolismo , Permeabilidad , Xenopus laevis/genética
5.
Neurochem Res ; 42(9): 2537-2550, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28434165

RESUMEN

Astrocytes in the mammalian central nervous system are interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. These proteins may exist as hemichannels in the plasma membrane in the absence of a 'docked' counterpart on the neighboring cell. A variety of stimuli are reported to open the hemichannels and thereby create a permeation pathway through the plasma membrane. Cx30 and Cx43 have, in their hemichannel configuration, been proposed to act as ion channels and membrane pathways for different molecules, such as fluorescent dyes, ATP, prostaglandins, and glutamate. Published studies about astrocyte hemichannel behavior, however, have been highly variable and/or contradictory. The field of connexin hemichannel research has been complicated by great variability in the experimental preparations employed, a lack of highly specific pharmacological inhibitors and by confounding changes associated with genetically modified animal models. This review attempts to critically assess the gating, inhibition and permeability of astrocytic connexin hemichannels and proposes that connexins in their hemichannel configuration act as gated pores with isoform-specific permeant selectivity. We expect that some, or all, of the controversies discussed here will be resolved by future research and sincerely hope that this review serves to motivate such clarifying investigations.


Asunto(s)
Astrocitos/metabolismo , Conexinas/fisiología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Astrocitos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Conexinas/agonistas , Conexinas/antagonistas & inhibidores , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología
6.
J Biol Chem ; 289(38): 26058-26073, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25086040

RESUMEN

Astrocytes and neurons express several large pore (hemi)channels that may open in response to various stimuli, allowing fluorescent dyes, ions, and cytoplasmic molecules such as ATP and glutamate to permeate. Several of these large pore (hemi)channels have similar characteristics with regard to activation, permeability, and inhibitor sensitivity. Consequently, their behaviors and roles in astrocytic and neuronal (patho)physiology remain undefined. We took advantage of the Xenopus laevis expression system to determine the individual characteristics of several large pore channels in isolation. Expression of connexins Cx26, Cx30, Cx36, or Cx43, the pannexins Px1 or Px2, or the purinergic receptor P2X7 yielded functional (hemi)channels with isoform-specific characteristics. Connexin hemichannels had distinct sensitivity to alterations of extracellular Ca(2+) and their permeability to dyes and small atomic ions (conductance) were not proportional. Px1 and Px2 exhibited conductance at positive membrane potentials, but only Px1 displayed detectable fluorescent dye uptake. P2X7, in the absence of Px1, was permeable to fluorescent dyes in an agonist-dependent manner. The large pore channels displayed overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the divalent cation-sensitive permeation pathway in primary cultured astrocytes. We observed no activation of membrane conductance or Cx43-mediated dye uptake in astrocytes nor in Cx43-expressing C6 cells. Our data underscore that although Cx43-mediated transport is observed in overexpressing cell systems, such transport may not be detectable in native cells under comparable experimental conditions.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Bencenosulfonatos/farmacología , Carbenoxolona/farmacología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Etidio/metabolismo , Colorantes Fluorescentes/metabolismo , Gadolinio/farmacología , Uniones Comunicantes/metabolismo , Potenciales de la Membrana , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Xenopus laevis
7.
J Neurophysiol ; 114(5): 3014-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26400258

RESUMEN

Connexins form gap junction channels made up of two connexons (hemichannels) from adjacent cells. Unopposed hemichannels may open toward the extracellular space upon stimulation by, e.g., removal of divalent cations from the extracellular solution and allow isoform-specific transmembrane flux of fluorescent dyes and physiologically relevant molecules, such as ATP and ions. Connexin (Cx)43 and Cx30 are the major astrocytic connexins. Protein kinase C (PKC) regulates Cx43 in its cell-cell gap junction configuration and may also act to keep Cx43 hemichannels closed. In contrast, the regulation of Cx30 hemichannels by PKC is unexplored. To determine phosphorylation-dependent regulation of Cx30 and Cx43 hemichannels, these were heterologously expressed in Xenopus laevis oocytes and opened with divalent cation-free solution. Inhibition of PKC activity did not affect hemichannel opening of either connexin. PKC activation had no effect on Cx43-mediated hemichannel activity, whereas both dye uptake and current through Cx30 hemichannels were reduced. We detected no PKC-induced connexin internalization from the plasma membrane, indicating that PKC reduced Cx30 hemichannel activity by channel closure. In an attempt to resolve the PKC phosphorylation site(s) on Cx30, alanine mutations of putative cytoplasmic PKC consensus sites were created to prevent phosphorylation (T5A, T8A, T102A, S222A, S225A, S239A, and S258A). These Cx30 mutants responded to PKC activation, suggesting that Cx30 hemichannels are not regulated by phosphorylation of a single site. In conclusion, Cx30, but not Cx43, hemichannels close upon PKC activation, illustrating that connexin hemichannels display not only isoform-specific permeability profiles but also isoform-specific regulation by PKC.


Asunto(s)
Conexina 43/metabolismo , Conexinas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Benzofenantridinas/farmacología , Conexina 30 , Indoles/farmacología , Maleimidas/farmacología , Potenciales de la Membrana , Ratones , Fosforilación , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Xenopus laevis
8.
Biochem Soc Trans ; 43(3): 508-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26009199

RESUMEN

Cardiomyocytes are connected by mechanical and electrical junctions located at the intercalated discs (IDs). Although these structures have long been known, it is becoming increasingly clear that their components interact. This review describes the involvement of the ID in electrical disturbances of the heart and focuses on the role of the gap junctional protein connexin 43 (Cx43). Current evidence shows that Cx43 plays a crucial role in organizing microtubules at the intercalated disc and thereby regulating the trafficking of the cardiac sodium channel NaV1.5 to the membrane.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Conexina 43/genética , Uniones Comunicantes/genética , Humanos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética
9.
Biochem Soc Trans ; 43(3): 519-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26009201

RESUMEN

Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results.


Asunto(s)
Encéfalo/fisiología , Conexina 43/biosíntesis , Corazón/fisiología , Proteína Quinasa C/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico/genética , Conexina 43/genética , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Uniones Comunicantes/fisiología , Regulación de la Expresión Génica , Humanos , Fosforilación , Proteína Quinasa C/genética
10.
Cardiovasc Diabetol ; 14: 87, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26169175

RESUMEN

BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS: Sprague-Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and reperfussion. Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson's Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43) expression and distribution was examined by western blotting and immunofluorescence respectively. RESULTS: Following 6 weeks of feeding, fructose-fat fed rats (FFFRs) showed QRS prolongation compared to controls (16.1 ± 0.51 (n = 6) vs. 14.7 ± 0.32 ms (n = 4), p < 0.05). Conduction velocity was slowed in FFFRs vs. controls (0.62 ± 0.02 (n = 13) vs. 0.79 ± 0.06 m/s (n = 11), p < 0.05) and Langendorff perfused FFFR hearts were more prone to ventricular fibrillation during reperfusion following ischemia (p < 0.05). The patch-clamp studies revealed no changes in Na(+) or K(+) currents, cell capacitance or gap junctional coupling. Cx43 expression was also unaltered in FFFRs, but immunofluorescence demonstrated an increased fraction of Cx43 localized at the intercalated discs in FFFRs compared to controls (78 ± 3.3 (n = 5) vs. 60 ± 4.2 % (n = 6), p < 0.01). No fibrosis was detected but FFFRs showed a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p < 0.0001). CONCLUSION: Six weeks on a high fructose-fat diet cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during reperfusion. These alterations are not explained by altered gap junctional coupling, Na(+), or K(+) currents, differences in cell size or fibrosis.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Isquemia Miocárdica/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estado Prediabético/fisiopatología , Animales , Conexina 43/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Electrocardiografía , Fructosa , Uniones Comunicantes/metabolismo , Masculino , Contracción Miocárdica , Reperfusión Miocárdica , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Canales de Sodio/metabolismo , Triglicéridos/metabolismo
11.
J Cardiovasc Pharmacol ; 66(2): 165-76, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25856531

RESUMEN

INTRODUCTION: SK channels have functional importance in the cardiac atrium of many species, including humans. Pharmacological blockage of SK channels has been reported to be antiarrhythmic in animal models of atrial fibrillation; however, the exact antiarrhythmic mechanism of SK channel inhibition remains unclear. OBJECTIVES: We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability, thereby prolonging the effective refractory period and slowing the conduction velocity (CV). We therefore aimed at elucidating these properties of SK channel inhibition and the underlying antiarrhythmic mechanisms using microelectrode action potential (AP) recordings and CV measurements in isolated rat atrium. Automated patch clamping and two-electrode voltage clamp were used to access INa and IK,ACh, respectively. RESULTS: The SK channel inhibitor N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) exhibited antiarrhythmic effects. ICA prevented electrically induced runs of atrial fibrillation in the isolated right atrium and induced atrial postrepolarization refractoriness and depolarized RMP. Moreover, ICA (1-10 µM) was found to slow CV; however, because of a marked prolongation of effective refractory period, the calculated wavelength was increased. Furthermore, at increased pacing frequencies, SK channel inhibition by ICA (10-30 µM) demonstrated prominent depression of other sodium channel-dependent parameters. ICA did not inhibit IK,ACh, but at concentrations above 10 µM, ICA use dependently inhibited INa. CONCLUSIONS: SK channel inhibition modulates multiple parameters of AP. It prolongs the AP duration and shifts the RMP towards more depolarized potentials through direct ISK block. This indirectly leads to sodium channel inhibition through accumulation of state dependently inactivated channels, which ultimately slows conduction and decreases excitability. However, a contribution from a direct sodium channel inhibition cannot be ruled. We here propose that the primary antiarrhythmic mechanism of SK channel inhibition is through direct potassium channel block and through indirect sodium channel inhibition.


Asunto(s)
Antiarrítmicos/farmacología , Función del Atrio Derecho/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Animales , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/fisiopatología , Función del Atrio Derecho/fisiología , Células CHO , Cricetinae , Cricetulus , Femenino , Atrios Cardíacos/efectos de los fármacos , Masculino , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/uso terapéutico , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Xenopus laevis
12.
Cardiovasc Diabetol ; 12: 19, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23327647

RESUMEN

BACKGROUND: Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. METHODS: We used Zucker Diabetic Fatty (ZDF) rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL) rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. RESULTS: CV was significantly slower in ZDF rats (56±1.9 cm/s) compared to non-diabetic controls (ZDL, 66±1.6 cm/s), but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43) was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 %) compared to ZDL rats (30±8%), p<0.04. Judged by electrophoretic mobility, C×43 phosphorylation was unchanged between ZDF and ZDL rats. Also, no differences in cardiomyocyte size or histomorphometry including fibrosis were observed between groups, but the volume of intracellular lipid droplets was 4.2 times higher in ZDF compared to ZDL rats (p<0.01). CONCLUSION: CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/fisiopatología , Corazón/fisiología , Animales , Masculino , Miocardio/patología , Técnicas de Cultivo de Órganos , Ratas , Ratas Zucker
13.
Am J Physiol Regul Integr Comp Physiol ; 297(2): R243-7, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19535680

RESUMEN

Intercellular communication via gap junction channels can be quantified by several methods based on diffusion of fluorescent dyes or metabolites. Given the variation in intercellular coupling of cells, even under untreated control conditions, it is of essence to quantify the coupling between numerous cells to obtain reliable estimates of metabolic coupling. Quantification is often based on manual counting of fluorescent cells, which is time consuming and may include some degree of subjectivity. In this report, we introduce a technique based on digital image analysis, and the software for the analysis is presented together with a detailed protocol in the online supplemental material (http://bmi.ku.dk/matlab_program/). Fluorescent dye was introduced in connexin 43-expressing C6 glioma cells by in situ electroporation, and fluorescence intensity was measured in the electroporated cells and in cells receiving dye by intercellular diffusion. The analysis performed is semiautomatic, and comparison with traditional cell counting shows that this method reliably determines the effect of uncoupling by several interventions. This new method of analysis yields a rapid and objective quantification process with a high degree of reproducibility.


Asunto(s)
Comunicación Celular/fisiología , Uniones Comunicantes/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Carbenoxolona/farmacología , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Conexina 43/genética , Conexinas/farmacología , Dextranos/metabolismo , Electroporación/métodos , Colorantes Fluorescentes/metabolismo , Uniones Comunicantes/efectos de los fármacos , Internet , Isoquinolinas/metabolismo , Microscopía Fluorescente/métodos , Neuroglía/metabolismo , Octanoles/farmacología , Oligopéptidos , Ratas , Programas Informáticos , Transfección
14.
Physiol Rep ; 7(7): e14049, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30968589

RESUMEN

Diabetic patients suffer from both cardiac lipid accumulation and an increased risk of arrhythmias and sudden cardiac death. This correlation suggests a link between diabetes induced cardiac steatosis and electrical abnormalities, however, the underlying mechanism remains unknown. We previously showed that cardiac conduction velocity slows in Zucker diabetic fatty rats and in fructose-fat fed rats, models that both exhibit prominent cardiac steatosis. The aim of this study was to investigate whether acute cardiac lipid accumulation reduces conduction velocity per se. Cardiac lipid accumulation was induced acutely by perfusing isolated rat hearts with palmitate-glucose buffer, or subacutely by fasting rats overnight. Subsequently, longitudinal cardiac conduction velocity was measured in right ventricular tissue strips, and intramyocardial triglyceride and lipid droplet content was determined by thin layer chromatography and BODIPY staining, respectively. Perfusion with palmitate-glucose buffer significantly increased intramyocardial triglyceride levels compared to perfusion with glucose (2.16 ± 0.17 (n = 10) vs. 0.92 ± 0.33 nmol/mg WW (n = 9), P < 0.01), but the number of lipid droplets was very low in both groups. Fasting of rats, however, resulted in both significantly elevated intramyocardial triglyceride levels compared to fed rats (3.27 ± 0.43 (n = 10) vs. 1.45 ± 0.24 nmol/mg WW (n = 10)), as well as a larger volume of lipid droplets (0.60 ± 0.13 (n = 10) vs. 0.21 ± 0.06% (n = 10), P < 0.05). There was no significant difference in longitudinal conduction velocity between palmitate-glucose perfused and control hearts (0.77 ± 0.025 (n = 10) vs. 0.75 m/sec ± 0.029 (n = 9)), or between fed and fasted rats (0.75 ± 0.042 m/sec (n = 10) vs. 0.79 ± 0.047 (n = 10)). In conclusion, intramyocardial lipid accumulation does not slow cardiac longitudinal conduction velocity per se. This is true for both increased intramyocardial triglyceride content, induced by palmitate-glucose perfusion, and increased intramyocardial triglyceride and lipid droplet content, generated by fasting.


Asunto(s)
Sistema de Conducción Cardíaco/efectos de los fármacos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Ácido Palmítico/farmacología , Triglicéridos/metabolismo , Animales , Sistema de Conducción Cardíaco/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
15.
Biochim Biophys Acta ; 1773(6): 764-73, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17442416

RESUMEN

Cardiomyocytes may experience significant cell swelling during ischemia and reperfusion. Such changes in cardiomyocyte volume have been shown to affect the electrical properties of the heart, possibly leading to cardiac arrhythmia. In the present study the regulatory volume decrease (RVD) response of neonatal rat cardiomyocytes was studied in intact single cells attached to coverslips, i.e. with an intact cytoskeleton. The potential contribution of KCNQ (Kv7) channels to the RVD response and the possible involvement of the F-actin cytoskeleton were investigated. The rate of RVD was significantly inhibited in the presence of the KCNQ channel blocker XE-991 (10 and 100 microM). Electrophysiological experiments confirmed the presence of an XE-991 sensitive current and Western blotting analysis revealed that KCNQ1 channel protein was present in the neonatal rat cardiomyocytes. Hypoosmotic cell swelling changes the structure of the F-actin cytoskeleton, leading to a more rounded cell shape, less pronounced F-actin stress fibers and patches of actin. In the presence of cytochalasin D (1 microM), a potent inhibitor of actin polymerization, the RVD response was strongly reduced, confirming a possible role for an intact F-actin cytoskeleton in linking cell swelling to activation of ion transport in neonatal rat cardiomyocytes.


Asunto(s)
Actinas/metabolismo , Tamaño de la Célula , Canales de Potasio KCNQ/metabolismo , Potenciales de la Membrana , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Actinas/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Antracenos/farmacología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Adhesión Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Citocalasina D/farmacología , Conductividad Eléctrica , Transporte Iónico/efectos de los fármacos , Canales de Potasio KCNQ/antagonistas & inhibidores , Potenciales de la Membrana/efectos de los fármacos , Miocardio/patología , Miocitos Cardíacos/patología , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Fibras de Estrés/metabolismo , Fibras de Estrés/patología
16.
Channels (Austin) ; 11(3): 183-195, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28055302

RESUMEN

L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Homeostasis , Flujo Sanguíneo Regional , Animales , Humanos , Potenciales de la Membrana , Contracción Muscular
17.
Sci Signal ; 8(364): fs4, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25690011

RESUMEN

Sympathetic vasoconstriction plays an important role in the control of blood pressure and the distribution of blood flow. In this issue of Science Signaling, Billaud et al. show that sympathetic vasoconstriction occurs through a complex scheme involving the activation of large-pore pannexin 1 channels and the subsequent release of adenosine triphosphate that promotes contraction in an autocrine and paracrine manner. This elaborate mechanism may function as a point of intercept for other signaling pathways­for example, in relation to the phenomenon "functional sympatholysis," in which exercise abrogates sympathetic vasoconstriction in skeletal muscle. Because pannexin 1 channels are inhibited by nitric oxide, they may function as a switch to turn off adrenergic signaling in skeletal muscle during exercise.


Asunto(s)
Presión Sanguínea/fisiología , Conexinas/metabolismo , Músculo Liso Vascular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transducción de Señal/fisiología , Vasoconstricción/fisiología , Animales , Humanos
18.
FEBS Lett ; 588(8): 1446-57, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24503060

RESUMEN

Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.


Asunto(s)
Potenciales de Acción , Permeabilidad de la Membrana Celular , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Conexina 30 , Uniones Comunicantes/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Ácido Láctico/metabolismo , Potenciales de la Membrana , Ratones , Ratas , Agua/metabolismo , Xenopus
19.
Eur J Pharm Sci ; 46(4): 222-32, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-21888966

RESUMEN

OBJECTIVE: A recently developed dye-based assay to study gap junction permeability is analysed. The assay is based on electroporation of dye into a large number of connexin 43 expressing cells, grown to confluency on electrically conductive slides. The subsequent intercellular spread of dye to non-electroporated parts of the monolayer enables estimation of the intercellular coupling. So far, the extent of dye spread has been analyzed in qualitative terms only and not in a manner based directly on the physics of the underlying diffusion process. METHODS: We apply a continuum approximation assuming that the observed dye spread can be described by Fick's law of diffusion. Deduced from Fick's law, new measures are presented which directly relate the observed spread of dye to the diffusion coefficient. RESULTS: The theoretical framework enables the estimation of an effective diffusion coefficient from Fick's law independently of the specific indicator substance used in the assay. For Lucifer Yellow, diffusion stops within few minutes after the electroporation. Therefore only an order-of-magnitude estimate of the diffusion coefficient can be given for this dye. CONCLUSION: In terms of the underlying diffusion coefficient, the hitherto used measures give a relatively poor degree of quantification. In contrast, the present methods may yield direct information on the effective intercellular diffusion coefficient and hence provide additional and more precise information as to the permeability modulating effect of various substances.


Asunto(s)
Comunicación Celular , Simulación por Computador , Uniones Comunicantes/metabolismo , Modelos Biológicos , Biología de Sistemas , Animales , Línea Celular Tumoral , Conexina 43/genética , Conexina 43/metabolismo , Difusión , Conductividad Eléctrica , Electroporación , Colorantes Fluorescentes/metabolismo , Isoquinolinas/metabolismo , Microscopía Fluorescente , Permeabilidad , Ratas , Transfección
20.
Compr Physiol ; 2(3): 1981-2035, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23723031

RESUMEN

Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Secuencia de Aminoácidos , Animales , Comunicación Celular , Conexinas/química , Conexinas/genética , Uniones Comunicantes/fisiología , Uniones Comunicantes/ultraestructura , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA