Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(16): 4334-4341, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706925

RESUMEN

Telescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a three mirror anastigmat telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile.

2.
Appl Opt ; 61(34): 10309-10319, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36606797

RESUMEN

We present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments.

3.
Proc Natl Acad Sci U S A ; 116(28): 13762-13767, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235593

RESUMEN

Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the "curse of dimensionality" in high dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is intensive embedding, which not only is isometric (preserving local distances) but also allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter ([Formula: see text]) model as applied to the cosmic microwave background.

4.
Appl Opt ; 60(29): 9029-9035, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623982

RESUMEN

Near-field radio holography is a common method for measuring and aligning mirror surfaces for millimeter and sub-millimeter telescopes. In instruments with more than a single mirror, degeneracies arise in the holography measurement, requiring multiple measurements and new fitting methods. We present HoloSim-ML, a Python code for beam simulation and analysis of radio holography data from complex optical systems. This code uses machine learning to efficiently determine the position of hundreds of mirror adjusters on multiple mirrors with few micrometer accuracy. We apply this approach to the example of the Simons Observatory 6 m telescope.

5.
Appl Opt ; 60(4): 864-874, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690402

RESUMEN

Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to 65∘ angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.

6.
Appl Opt ; 60(4): 823-837, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33690389

RESUMEN

We present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction.

7.
Appl Opt ; 56(10): 2796-2803, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28375244

RESUMEN

Refractive optical elements are widely used in millimeter and sub-millimeter (sub-mm) astronomical telescopes. High-resistivity silicon is an excellent material for dielectric lenses given its low loss tangent, high thermal conductivity, and high index of refraction. The high index of refraction of silicon causes a large Fresnel reflectance at the vacuum-silicon interface (up to 30%), which can be reduced with an anti-reflection (AR) coating. In this work, we report techniques for efficiently AR coating silicon at sub-mm wavelengths using deep reactive ion etching (DRIE) and bonding the coated silicon to another silicon optic. Silicon wafers of 100 mm diameter (1 mm thick) were coated and bonded using the silicon direct bonding technique at high temperature (1100°C). No glue is used in this process. Optical tests using a Fourier transform spectrometer show sub-percent reflections for a single-layer DRIE AR coating designed for use at 320 µm on a single wafer. Cryogenic (10 K) measurements of a bonded pair of AR-coated wafers also reached sub-percent reflections. A prototype two-layer DRIE AR coating to reduce reflections and increase bandwidth is presented, and plans for extending this approach are discussed.

8.
Appl Opt ; 55(7): 1688-96, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974631

RESUMEN

Current large-aperture cosmic microwave background (CMB) telescopes have nearly maximized the number of detectors that can be illuminated while maintaining diffraction-limited image quality. The polarization-sensitive detector arrays being deployed in these telescopes in the next few years will have roughly 104 detectors. Increasing the mapping speed of future instruments by at least an order of magnitude is important to enable precise probes of the inflationary paradigm in the first fraction of a second after the big bang and provide strong constraints on cosmological parameters. The CMB community has begun planning a next generation "Stage IV" CMB project that will be comprised of multiple telescopes with between 105-106 detectors to pursue these goals. This paper introduces the new crossed Dragone telescope and receiver optics designs that increase the usable diffraction-limited field-of-view, and therefore the mapping speed, by an order of magnitude compared to the upcoming generation of large-aperture instruments. Polarization systematics and engineering considerations are presented, including a preliminary receiver model to demonstrate that these designs will enable high efficiency illumination of >105 detectors in a next generation CMB telescope.

9.
Phys Rev Lett ; 114(15): 151302, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933304

RESUMEN

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

10.
Opt Lett ; 37(20): 4200-2, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23073410

RESUMEN

Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented.

11.
Phys Rev Lett ; 109(4): 041101, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-23006072

RESUMEN

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.002, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology.

12.
Phys Rev Lett ; 107(2): 021301, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797590

RESUMEN

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

13.
Phys Rev Lett ; 107(2): 021302, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797591

RESUMEN

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

14.
PLoS One ; 2(6): e567, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17593966

RESUMEN

Although the cost of mate choice is an essential component of the evolution and maintenance of sexual selection, the energetic cost of female choice has not previously been assessed directly. Here we report that females can incur high energetic costs as a result of discriminating among potential mates. We used heart rate biologging to quantify energetic expenditure in lek-mating female Galápagos marine iguanas (Amblyrhynchus cristatus). Receptive females spent 78.9+/-23.2 kJ of energy on mate choice over a 30-day period, which is equivalent to approximately (3/4) of one day's energy budget. Females that spent more time on the territories of high-quality, high-activity males displayed greater energetic expenditure on mate choice, lost more mass, and showed a trend towards producing smaller follicles. Choosy females also appear to face a reduced probability of survival if El Niño conditions occur in the year following breeding. These findings indicate that female choice can carry significant costs, and suggest that the benefits that lek-mating females gain through mating with a preferred male may be higher than previously predicted.


Asunto(s)
Conducta de Elección , Metabolismo Energético , Lagartos/fisiología , Preferencia en el Apareamiento Animal , Animales , Conducta Competitiva , Femenino , Frecuencia Cardíaca , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA