Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(5): e1012137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805510

RESUMEN

Lecithin:cholesterol acyltransferase (LCAT) exhibits α-activity on high-density and ß-activity on low-density lipoproteins. However, the molecular determinants governing LCAT activation by different apolipoproteins remain elusive. Uncovering these determinants would offer the opportunity to design and explore advanced therapies against dyslipidemias. Here, we have conducted coarse-grained and all-atom molecular dynamics simulations of LCAT with nanodiscs made with α-helical amphiphilic peptides either derived from apolipoproteins A1 and E (apoA1 and apoE) or apoA1 mimetic peptide 22A that was optimized to activate LCAT. This study aims to explore what drives the binding of peptides to our previously identified interaction site in LCAT. We hypothesized that this approach could be used to screen for binding sites of LCAT in different apolipoproteins and would provide insights to differently localized LCAT activities. Our screening approach was able to discriminate apoA1 helixes 4, 6, and 7 as key contributors to the interaction with LCAT supporting the previous research data. The simulations provided detailed molecular determinants driving the interaction with LCAT: the formation of hydrogen bonds or salt bridges between peptides E4 or D4 and LCAT S236 or K238 residues. Additionally, salt bridging between R7 and D73 was observed, depending on the availability of R7. Expanding our investigation to diverse plasma proteins, we detected novel LCAT binding helixes in apoL1, apoB100, and serum amyloid A. Our findings suggest that the same binding determinants, involving E4 or D4 -S236 and R7-D73 interactions, influence LCAT ß-activity on low-density lipoproteins, where apoE and or apoB100 are hypothesized to interact with LCAT.


Asunto(s)
Apolipoproteína A-I , Apolipoproteínas , Simulación de Dinámica Molecular , Fosfatidilcolina-Esterol O-Aciltransferasa , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Sitios de Unión , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Humanos , Péptidos/química , Péptidos/metabolismo , Nanoestructuras/química , Unión Proteica , Apolipoproteínas E/química , Apolipoproteínas E/metabolismo
2.
Mol Pharm ; 19(11): 4135-4148, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36111986

RESUMEN

The mechanistic details behind the activation of lecithin-cholesterol acyltransferase (LCAT) by apolipoprotein A-I (apoA-I) and its mimetic peptides are still enigmatic. Resolving the fundamental principles behind LCAT activation will facilitate the design of advanced HDL-mimetic therapeutic nanodiscs for LCAT deficiencies and coronary heart disease and for several targeted drug delivery applications. Here, we have combined coarse-grained molecular dynamics simulations with complementary experiments to gain mechanistic insight into how apoA-Imimetic peptide 22A and its variants tune LCAT activity in peptide-lipid nanodiscs. Our results highlight that peptide 22A forms transient antiparallel dimers in the rim of nanodiscs. The dimerization tendency considerably decreases with the removal of C-terminal lysine K22, which has also been shown to reduce the cholesterol esterification activity of LCAT. In addition, our simulations revealed that LCAT prefers to localize to the rim of nanodiscs in a manner that shields the membrane-binding domain (MBD), αA-αA', and the lid amino acids from the water phase, following previous experimental evidence. Meanwhile, the location and conformation of LCAT in the rim of nanodiscs are spatially more restricted when the active site covering the lid of LCAT is in the open form. The average location and spatial dimensions of LCAT in its open form were highly compatible with the electron microscopy images. All peptide 22A variants studied here had a specific interaction site in the open LCAT structure flanked by the lid and MBD domain. The bound peptides showed different tendencies to form antiparallel dimers and, interestingly, the temporal binding site occupancies of the peptide variants affected their in vitro ability to promote LCAT-mediated cholesterol esterification.


Asunto(s)
Apolipoproteína A-I , Fosfatidilcolina-Esterol O-Aciltransferasa , Fosfatidilcolina-Esterol O-Aciltransferasa/química , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Apolipoproteína A-I/química , Fosfolípidos/metabolismo , Lecitinas , Esterol O-Aciltransferasa/metabolismo , Lipoproteínas HDL/química , Dominio Catalítico , Péptidos , Colesterol/metabolismo
3.
PLoS Comput Biol ; 17(3): e1008426, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720934

RESUMEN

Lecithin:cholesterol acyltransferase protein (LCAT) promotes the esterification reaction between cholesterol and phospholipid-derived acyl chains. Positive allosteric modulators have been developed to treat LCAT deficiencies and, plausibly, also cardiovascular diseases in the future. The mechanism of action of these compounds is poorly understood. Here computational docking and atomistic molecular dynamics simulations were utilized to study the interactions between LCAT and the activating compounds. Results indicate that all drugs bind to the allosteric binding pocket in the membrane-binding domain in a similar fashion. The presence of the compounds in the allosteric site results in a distinct spatial orientation and sampling of the membrane-binding domain (MBD). The MBD's different spatial arrangement plausibly affects the lid's movement from closed to open state and vice versa, as suggested by steered molecular dynamics simulations.


Asunto(s)
Lecitinas/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferasa/metabolismo , Regulación Alostérica , Sitios de Unión , Colesterol/metabolismo , Esterificación , Humanos
4.
ACS Appl Bio Mater ; 4(9): 7157-7167, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35006947

RESUMEN

The diversity and safety of nanofibrillated cellulose (NFC) hydrogels have gained a vast amount of interest at the pharmaceutical site in recent years. Moreover, this biomaterial has a high potential to be utilized as a protective matrix during the freeze-drying of heat-sensitive pharmaceuticals and biologics to increase their properties for long-term storing at room temperature and transportation. Since freeze-drying and subsequent reconstitution have not been optimized for this biomaterial, we must find a wider understanding of the process itself as well as the molecular level interactions between the NFC hydrogel and the most suitable lyoprotectants. Herein we optimized the reconstitution of the freeze-dried NFC hydrogel by considering critical quality attributes required to ensure the success of the process and gained insights of the obtained experimental data by simulating the effects of the used lyoprotectants on water and NFC. We discovered the correlation between the measured characteristics and molecular dynamics simulations and obtained successful freeze-drying and subsequent reconstitution of NFC hydrogel with the presence of 300 mM of sucrose. These findings demonstrated the possibility of using the simulations together with the experimental measurements to obtain a more comprehensive way to design a successful freeze-drying process, which could be utilized in future pharmaceutical applications.


Asunto(s)
Celulosa , Hidrogeles , Materiales Biocompatibles , Liofilización , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA