Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell ; 158(1): 121-31, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995983

RESUMEN

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.


Asunto(s)
Mamíferos/metabolismo , Ribosomas/química , Secuencia de Aminoácidos , Animales , Anticodón/metabolismo , Codón/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/metabolismo , Conejos , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/metabolismo
2.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29883607

RESUMEN

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Asunto(s)
Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Relación Estructura-Actividad
3.
RNA ; 24(11): 1512-1519, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076205

RESUMEN

Reconstitution of ribosomes in vitro from individual ribosomal proteins provides a powerful tool for understanding the ribosome assembly process including the sequential incorporation of ribosomal proteins. However, conventional assembly methods require high-salt conditions for efficient ribosome assembly. In this study, we reconstituted 30S ribosomal subunits from individually purified ribosomal proteins in the presence of ribosome biogenesis factors. In this system, two GTPases (Era and YjeQ) facilitated assembly of a 30S subunit exhibiting poly(U)-directed polyphenylalanine synthesis and native protein synthesis under physiological conditions. This in vitro system permits a study of the assembly process and function of ribosome biogenesis factors, and it will facilitate the generation of ribosomes from DNA without using cells.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Evolución Biológica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Recombinantes
4.
Proc Natl Acad Sci U S A ; 114(22): E4399-E4407, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507157

RESUMEN

Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How cotranslational protein folding and the rate of synthesis are linked to a protein's amino acid sequence is still not well defined. Here, we follow synthesis by individual ribosomes using dual-trap optical tweezers and observe simultaneous folding of the nascent polypeptide chain in real time. We show that observed stalling during translation correlates with slowed peptide bond formation at successive proline sequence positions and electrostatic interactions between positively charged amino acids and the ribosomal tunnel. We also determine possible cotranslational folding sites initiated by hydrophobic collapse for an unstructured and two globular proteins while directly measuring initial cotranslational folding forces. Our study elucidates the intricate relationship among a protein's amino acid sequence, its cotranslational nascent-chain elongation rate, and folding.


Asunto(s)
Biosíntesis de Proteínas , Pliegue de Proteína , Secuencia de Aminoácidos , Fenómenos Biofísicos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Pinzas Ópticas , Modificación Traduccional de las Proteínas , Ribosomas/metabolismo , Imagen Individual de Molécula , Electricidad Estática
5.
Mol Cell ; 44(2): 214-24, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017870

RESUMEN

Although the structural core of the ribosome is conserved in all kingdoms of life, eukaryotic ribosomes are significantly larger and more complex than their bacterial counterparts. The extent to which these differences influence the molecular mechanism of translation remains elusive. Multiparticle cryo-electron microscopy and single-molecule FRET investigations of the mammalian pretranslocation complex reveal spontaneous, large-scale conformational changes, including an intersubunit rotation of the ribosomal subunits. Through structurally related processes, tRNA substrates oscillate between classical and at least two distinct hybrid configurations facilitated by localized changes in their L-shaped fold. Hybrid states are favored within the mammalian complex. However, classical tRNA positions can be restored by tRNA binding to the E site or by the eukaryotic-specific antibiotic and translocation inhibitor cycloheximide. These findings reveal critical distinctions in the structural and energetic features of bacterial and mammalian ribosomes, providing a mechanistic basis for divergent translation regulation strategies and species-specific antibiotic action.


Asunto(s)
Aminoacil-ARN de Transferencia/química , Ribosomas/química , Animales , Antibacterianos/química , Sitios de Unión , Microscopía por Crioelectrón , Cicloheximida/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/metabolismo , Conejos , Ribosomas/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(9): E1180-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26888283

RESUMEN

According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1-IF3). Here, we describe a novel type of initiation termed "70S-scanning initiation," where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine-Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Modelos Moleculares , Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/metabolismo
7.
Nature ; 485(7399): 526-9, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22622583

RESUMEN

Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3 Å resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.


Asunto(s)
Escherichia coli/química , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Microscopía por Crioelectrón , Ácido Fusídico/metabolismo , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/ultraestructura , Unión Proteica , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/genética , Ribosomas/ultraestructura
8.
Mol Cell ; 33(2): 227-36, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19187763

RESUMEN

Translation of leaderless mRNAs, lacking ribosomal recruitment signals other than the 5'-terminal AUG-initiating codon, occurs in all three domains of life. Contemporary leaderless mRNAs may therefore be viewed as molecular fossils resembling ancestral mRNAs. Here, we analyzed the phenomenon of sustained translation of a leaderless mRNA in the presence of the antibiotic kasugamycin. Unexpected from the known in vitro effects of the drug, kasugamycin induced the formation of stable approximately 61S ribosomes in vivo, which were proficient in selectively translating leaderless mRNA. 61S particles are devoid of more than six proteins of the small subunit, including the functionally important proteins S1 and S12. The lack of these proteins could be reconciled with structural changes in the 16S rRNA. These studies provide in vivo evidence for the functionality of ribosomes devoid of multiple proteins and shed light on the evolutionary history of ribosomes.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo
9.
Mol Cell ; 35(4): 502-10, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716793

RESUMEN

Bacterial translation elongation factor G (EF-G) catalyzes translocation during peptide elongation and mediates ribosomal disassembly during ribosome recycling in concert with the ribosomal recycling factor (RRF). Two homologs of EF-G have been identified in mitochondria from yeast to man, EF-G1mt and EF-G2mt. Here, we demonstrate that the dual function of bacterial EF-G is divided between EF-G1mt and EF-G2mt in human mitochondria (RRFmt). EF-G1mt specifically catalyzes translocation, whereas EF-G2mt mediates ribosome recycling with human mitochondrial RRF but lacks translocation activity. Domain swapping experiments suggest that the functional specificity for EF-G2mt resides in domains III and IV. Furthermore, GTP hydrolysis by EF-G2mt is not necessary for ribosomal splitting, in contrast to the bacterial-recycling mode. Because EF-G2mt represents a class of translational GTPase that is involved in ribosome recycling, we propose to rename this factor mitochondrial ribosome recycling factor 2 (RRF2mt).


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Extensión de la Cadena Peptídica de Translación , Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factor G de Elongación Peptídica/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Porcinos
10.
Nucleic Acids Res ; 43(12): 5687-98, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26026160

RESUMEN

Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNA(Gly) that was selected according to the rules of 'thermodynamic compensation'. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.


Asunto(s)
Aminoácidos/química , Biosíntesis de Péptidos , Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Aminoácidos/metabolismo , Factor Tu de Elongación Peptídica/química , Péptidos/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Estereoisomerismo , Aminoacilación de ARN de Transferencia
11.
PLoS Genet ; 10(9): e1004616, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233460

RESUMEN

Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.


Asunto(s)
Codón de Terminación , Mitocondrias/genética , Mitocondrias/metabolismo , Terminación de la Cadena Péptídica Traduccional , Proteínas/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Codón , Humanos , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas , Alineación de Secuencia , Porcinos
12.
Mol Cell ; 32(6): 827-37, 2008 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-19111662

RESUMEN

Small noncoding RNAs (sRNAs) have predominantly been shown to repress bacterial mRNAs by masking the Shine-Dalgarno (SD) or AUG start codon sequence, thereby preventing 30S ribosome entry and, consequently, translation initiation. However, many recently identified sRNAs lack obvious SD and AUG complementarity, indicating that sRNA-mediated translational control could also take place at other mRNA sites. We report that Salmonella RybB sRNA represses ompN mRNA translation by pairing with the 5' coding region. Results of systematic antisense interference with 30S binding to ompN and unrelated mRNAs suggest that sRNAs can act as translational repressors by sequestering sequences within the mRNA down to the fifth codon, even without SD and AUG start codon pairing. This "five codon window" for translational control in the 5' coding region of mRNA not only has implications for sRNA target predictions but might also apply to cis-regulatory systems such as RNA thermosensors and riboswitches.


Asunto(s)
Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Bacteriano/metabolismo , ARN no Traducido/metabolismo , Salmonella/metabolismo , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Codón/genética , Datos de Secuencia Molecular , Ácidos Nucleicos Heterodúplex/metabolismo , ARN sin Sentido/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/química , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Ribosomas/metabolismo
13.
PLoS Genet ; 8(7): e1002815, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829778

RESUMEN

The YbeB (DUF143) family of uncharacterized proteins is encoded by almost all bacterial and eukaryotic genomes but not archaea. While they have been shown to be associated with ribosomes, their molecular function remains unclear. Here we show that YbeB is a ribosomal silencing factor (RsfA) in the stationary growth phase and during the transition from rich to poor media. A knock-out of the rsfA gene shows two strong phenotypes: (i) the viability of the mutant cells are sharply impaired during stationary phase (as shown by viability competition assays), and (ii) during transition from rich to poor media the mutant cells adapt slowly and show a growth block of more than 10 hours (as shown by growth competition assays). RsfA silences translation by binding to the L14 protein of the large ribosomal subunit and, as a consequence, impairs subunit joining (as shown by molecular modeling, reporter gene analysis, in vitro translation assays, and sucrose gradient analysis). This particular interaction is conserved in all species tested, including Escherichia coli, Treponema pallidum, Streptococcus pneumoniae, Synechocystis PCC 6803, as well as human mitochondria and maize chloroplasts (as demonstrated by yeast two-hybrid tests, pull-downs, and mutagenesis). RsfA is unrelated to the eukaryotic ribosomal anti-association/60S-assembly factor eIF6, which also binds to L14, and is the first such factor in bacteria and organelles. RsfA helps cells to adapt to slow-growth/stationary phase conditions by down-regulating protein synthesis, one of the most energy-consuming processes in both bacterial and eukaryotic cells.


Asunto(s)
Bacterias , Eucariontes , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/química , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Secuencia Conservada , Eucariontes/genética , Eucariontes/crecimiento & desarrollo , Eucariontes/metabolismo , Células HeLa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
J Bacteriol ; 196(22): 3817-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25225274

RESUMEN

Mg(2+) and K(+) are the prevalent di- and monovalent cations inside the cells in all three domains, playing a dominant role in structure and function of biological macromolecules. Ribosomes bind a substantial fraction of total Mg(2+) and K(+) cations. In this issue of the Journal of Bacteriology, Akanuma and coworkers (G. Akanuma et al., J. Bacteriol. 196:3820-3830, 2014, doi:10.1128/JB.01896-14) report a surprising genetic link between ribosome amounts per cell and the intracellular Mg(2+) concentrations.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Magnesio/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
15.
Nucleic Acids Res ; 40(21): 10851-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22965132

RESUMEN

Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Chaperonas Moleculares/química , Proteínas Ribosómicas/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Factores de Elongación Enlazados a GTP Fosfohidrolasas/química , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Factores de Iniciación de Péptidos , Dominios y Motivos de Interacción de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Electricidad Estática , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(8): 3199-203, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300907

RESUMEN

Elongation factor 4 (EF4) is one of the most conserved proteins present in bacteria as well as in mitochondria and chloroplasts of eukaryotes. Although EF4 has the unique ability to catalyze the back-translocation reaction on posttranslocation state ribosomes, the physiological role of EF4 remains unclear. Here we demonstrate that EF4 is stored at the membrane of Escherichia coli cells and released into the cytoplasm upon conditions of high ionic strength or low temperature. Under such conditions, wild-type E. coli cells overgrow mutant cells lacking the EF4 gene within 5-10 generations. Elevated intracellular Mg(2+) concentrations or low temperature retard bacterial growth and inhibit protein synthesis, probably because of formation of aberrant elongating ribosomal states. We suggest that EF4 binds to these stuck ribosomes and remobilizes them, consistent with the EF4-dependent enhancement (fivefold) in protein synthesis observed under these unfavorable conditions. The strong selective advantage conferred by the presence of EF4 at high intracellular ionic strength or low temperatures explains the ubiquitous distribution and high conservation of EF4.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Magnesio , Biosíntesis de Proteínas/genética , Factores de Elongación Transcripcional/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Magnesio/farmacología , Concentración Osmolar , Factores de Iniciación de Péptidos , Transporte de Proteínas , Ribosomas/patología , Temperatura , Factores de Elongación Transcripcional/fisiología
17.
Mol Microbiol ; 86(1): 6-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22909071

RESUMEN

The tmRNA/SmpB system, which is almost universal in bacteria, rescues bacterial ribosomes stalled at the end of non-stop mRNAs (mRNAs lacking a stop codon). In addition, a few bacteria, including Escherichia coli, have developed a second two-component system as reported by Chadani et al. (2012). A small protein, ArfA of 55 amino acids (formerly called YdhL), mediates binding of release factor 2 to the ribosomal A site lacking a complete mRNA codon and thereby triggers translational termination and rescue of the stalled ribosome.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo
18.
Nat Struct Mol Biol ; 15(9): 910-5, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19172743

RESUMEN

EF4 (LepA) is an almost universally conserved translational GTPase in eubacteria. It seems to be essential under environmental stress conditions and has previously been shown to back-translocate the tRNAs on the ribosome, thereby reverting the canonical translocation reaction. In the current work, EF4 was directly visualized in the process of back-translocating tRNAs by single-particle cryo-EM. Using flexible fitting methods, we built a model of ribosome-bound EF4 based on the cryo-EM map and a recently published unbound EF4 X-ray structure. The cryo-EM map establishes EF4 as a noncanonical elongation factor that interacts not only with the elongating ribosome, but also with the back-translocated tRNA in the A-site region, which is present in a previously unseen, intermediate state and deviates markedly from the position of a canonical A-tRNA. Our results, therefore, provide insight into the underlying structural principles governing back-translocation.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Transporte Biológico Activo , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Sustancias Macromoleculares , Modelos Moleculares , Factores de Iniciación de Péptidos
19.
Nucleic Acids Res ; 39(12): 5264-75, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21378123

RESUMEN

Some viruses exploit internal initiation for their propagation in the host cell. This type of initiation is facilitated by structured elements (internal ribosome entry site, IRES) upstream of the initiator AUG and requires only a reduced number of canonical initiation factors. An important example are IRES of the virus family Dicistroviridae that bind to the inter-subunit side of the small ribosomal 40S subunit and lead to the formation of elongation-competent 80S ribosomes without the help of any initiation factor. Here, we present a comprehensive functional and structural analysis of eukaryotic-specific ribosomal protein rpS25 in the context of this type of initiation and propose a structural model explaining the essential involvement of rpS25 for hijacking the ribosome.


Asunto(s)
Regiones no Traducidas 5' , Dicistroviridae/genética , ARN Viral/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA