Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 74, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757505

RESUMEN

BACKGROUND: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. RESULTS: Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. CONCLUSIONS: As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest.


Asunto(s)
Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Técnicas de Cultivo Celular por Lotes , Cinética , Metanol/metabolismo
2.
Microb Cell Fact ; 18(1): 187, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675969

RESUMEN

BACKGROUND: The PAOX1-based expression system is the most widely used for producing recombinant proteins in the methylotrophic yeast Pichia pastoris (Komagataella phaffii). Despite relevant recent advances in regulation of the methanol utilization (MUT) pathway have been made, the role of specific growth rate (µ) in AOX1 regulation remains unknown, and therefore, its impact on protein production kinetics is still unclear. RESULTS: The influence of heterologous gene dosage, and both, operational mode and strategy, on culture physiological state was studied by cultivating the two PAOX1-driven Candida rugosa lipase 1 (Crl1) producer clones. Specifically, a clone integrating a single expression cassette of CRL1 was compared with one containing three cassettes over broad dilution rate and µ ranges in both chemostat and fed-batch cultivations. Chemostat cultivations allowed to establish the impact of µ on the MUT-related MIT1 pool which leads to a bell-shaped relationship between µ and PAOX1-driven gene expression, influencing directly Crl1 production kinetics. Also, chemostat and fed-batch cultivations exposed the favorable effects of increasing the CRL1 gene dosage (up to 2.4 fold in qp) on Crl1 production with no significant detrimental effects on physiological capabilities. CONCLUSIONS: PAOX1-driven gene expression and Crl1 production kinetics in P. pastoris were successfully correlated with µ. In fact, µ governs MUT-related MIT1 amount that triggers PAOX1-driven gene expression-heterologous genes included-, thus directly influencing the production kinetics of recombinant protein.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/metabolismo , Metanol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Dosificación de Gen , Expresión Génica , Regulación Fúngica de la Expresión Génica , Pichia/genética , Regiones Promotoras Genéticas
3.
Front Bioeng Biotechnol ; 11: 1130583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034257

RESUMEN

The current transition towards the circular bioeconomy requires a rational development of biorefineries to sustainably fulfill the present demands. The use of Komagataella phaffii (Pichia pastoris) can meet this challenge, since it has the capability to use crude glycerol as a carbon-source, a by-product from the biodiesel industry, while producing high- and low-added value products. Recombinant protein production (RPP) using K. phaffii has often been driven either by the methanol induced AOX1 promoter (P AOX1 ) and/or the constitutive GAP promoter (P GAP ). In the last years, strong efforts have been focused on developing novel expression systems that expand the toolbox variety of K. phaffii to efficiently produce diverse proteins that requires different strategies. In this work, a study was conducted towards the development of methanol-free expression system based on a heat-shock gene promoter (PDH) using glycerol as sole carbon source. Using this promoter, the recombinant expression is strongly induced in carbon-starving conditions. The classical P GAP was used as a benchmark, taking for both strains the lipase B from Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH outperformed P GAP controlled expression in shake-flask cultivations when using a slow-release continuous feeding technology, confirming that PDH is induced under pseudo-starving conditions. This increase was also confirmed in fed-batch cultivations. Several optimization rounds were carried out for PDH under different feeding and osmolarity conditions. In all of them the PDH controlled process outperformed the P GAP one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific productivity than P GAP fed-batch at low µ. Compared to the optimum approach for P GAP -based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer, while the specific productivity was very similar. To summarize, PDH is an inducible promoter that exhibited a non-coupled growth regulation showing high performance, which provides a methanol-free additional solution to the usual growth-coupled systems for RPP. Thus, this novel system emerges as a potential alternative for K. phaffii RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a circular economy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32671036

RESUMEN

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is currently considered one of the most promising hosts for recombinant protein production (RPP) and metabolites due to the availability of several tools to efficiently regulate the recombinant expression, its ability to perform eukaryotic post-translational modifications and to secrete the product in the extracellular media. The challenge of improving the bioprocess efficiency can be faced from two main approaches: the strain engineering, which includes enhancements in the recombinant expression regulation as well as overcoming potential cell capacity bottlenecks; and the bioprocess engineering, focused on the development of rational-based efficient operational strategies. Understanding the effect of strain and operational improvements in bioprocess efficiency requires to attain a robust knowledge about the metabolic and physiological changes triggered into the cells. For this purpose, a number of studies have revealed chemostat cultures to provide a robust tool for accurate, reliable, and reproducible bioprocess characterization. It should involve the determination of key specific rates, productivities, and yields for different C and N sources, as well as optimizing media formulation and operating conditions. Furthermore, studies along the different levels of systems biology are usually performed also in chemostat cultures. Transcriptomic, proteomic and metabolic flux analysis, using different techniques like differential target gene expression, protein description and 13C-based metabolic flux analysis, are widely described as valued examples in the literature. In this scenario, the main advantage of a continuous operation relies on the quality of the homogeneous samples obtained under steady-state conditions, where both the metabolic and physiological status of the cells remain unaltered in an all-encompassing picture of the cell environment. This contribution aims to provide the state of the art of the different approaches that allow the design of rational strain and bioprocess engineering improvements in Pichia pastoris toward optimizing bioprocesses based on the results obtained in chemostat cultures. Interestingly, continuous cultivation is also currently emerging as an alternative operational mode in industrial biotechnology for implementing continuous process operations.

5.
Microb Biotechnol ; 13(2): 315-327, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657146

RESUMEN

Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP ) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed-batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single-copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP ) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post-transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed-batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade-off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.


Asunto(s)
Pichia , Dosificación de Gen , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA