RESUMEN
The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.
Asunto(s)
Detergentes , Receptores Nicotínicos , Animales , Espectrometría de Masas en Tándem , Torpedo , Receptores Nicotínicos/química , Lípidos/química , ElectrofisiologíaRESUMEN
In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex display a significant delay in the ACh-induce channel activation. In summary, these results suggest that the physical properties of the lipid analog detergents (headgroup and acyl chain length) are the most effective in maintaining both the stability and functionality of the nAChR in the detergent solubilized complex.
Asunto(s)
Detergentes/química , Membrana Dobles de Lípidos/química , Oocitos/fisiología , Fosfolípidos/química , Receptores Nicotínicos/química , Torpedo/metabolismo , Animales , Membrana Celular/química , Membrana Celular/fisiología , Colesterol/química , Ácidos Cólicos/química , Cristalización , Detergentes/clasificación , Potenciales Evocados/fisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Microinyecciones , Oocitos/química , Técnicas de Placa-Clamp , Unión Proteica , Estabilidad Proteica , Receptores Nicotínicos/aislamiento & purificación , Receptores Nicotínicos/fisiología , Colato de Sodio/química , Relación Estructura-Actividad , Termodinámica , Xenopus laevis/metabolismoRESUMEN
A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings.
Asunto(s)
Heces/microbiología , Metagenoma , Contaminación del Agua , Animales , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Humanos , Reacción en Cadena de la Polimerasa , Sensibilidad y Especificidad , Clima TropicalRESUMEN
Two novel gull-specific quantitative PCR (qPCR) assays were developed using 16S rRNA gene sequences from gull fecal clone libraries: a SYBR green assay targeting Streptococcus spp. (gull3) and a hydrolysis TaqMan assay targeting Catellicoccus marimammalium (gull4). The objectives of this study were to compare the host specificity of a previous C. marimammalium qPCR assay (gull2) with that of the new markers and to examine the presence of the three gull markers in environmental water samples from different geographic locations. Most of the gull fecal samples tested (n = 255) generated positive signals with the gull2 and gull4 assays (i.e., >86%), whereas only 28% were positive with gull3. Low prevalence and abundance of tested gull markers (0.6 to 15%) were observed in fecal samples from six nonavian species (n = 180 fecal samples), whereas the assays cross-reacted to some extent (13 to 31%) with other (nongull) avian fecal samples. The gull3 assay was positive against fecal samples from 11 of 15 avian species, including gull. Of the presumed gull-impacted water samples (n = 349), 86%, 59%, and 91% were positive with the gull2, the gull3, and the gull4 assays, respectively. Approximately 5% of 239 non-gull-impacted water samples were positive with the gull2 and the gull4 assays, whereas 21% were positive witg the gull3 assay. While the relatively high occurrence of gull2 and gull4 markers in waters impacted by gull feces suggests that these assays could be used in environmental monitoring studies, the data also suggest that multiple avian-specific assays will be needed to accurately assess the contribution of different avian sources in recreational waters.
Asunto(s)
Técnicas Bacteriológicas/métodos , Charadriiformes/microbiología , Enterococcaceae/genética , Heces/microbiología , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Streptococcus/genética , Animales , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genes de ARNr , Datos de Secuencia Molecular , ARN Ribosómico 16S/química , Sensibilidad y Especificidad , Análisis de Secuencia de ADNRESUMEN
Novel markers of fecal pollution in tropical waters are needed since conventional methods recommended for other geographical regions may not apply. To address this, the prevalence of thermotolerant coliforms, enterococci, coliphages, and enterophages was determined by culture methods across a watershed. Additionally, human-, chicken-, and cattle-specific PCR assays were used to identify potential fecal pollution sources in this watershed. An enterococcus quantitative PCR (qPCR) assay was tested and correlated with culture methods at three sites since water quality guidelines could incorporate this technique as a rapid detection method. Various rainfall events reported before sample collection at three sites were considered in the data analyses. Thermotolerant coliforms, enterococci, coliphages, and enterophages were detected across the watershed. Human-specific Bacteroides bacteria, unlike the cattle- and chicken-specific bacteria, were detected mostly at sites with the corresponding fecal impact. Enterococci were detected by qPCR as well, but positive correlations with the culture method were noted at two sites, suggesting that either technique could be used. However, no positive correlations were noted for an inland lake tested, suggesting that qPCR may not be suitable for all water bodies. Concentrations of thermotolerant coliforms and bacteriophages were consistently lower after rainfall events, pointing to a possible dilution effect. Rainfall positively correlated with enterococci detected by culturing and qPCR, but this was not the case for the inland lake. The toolbox of methods and correlations presented here could be potentially applied to assess the microbial quality of various water types.
Asunto(s)
Lagos/microbiología , Lagos/virología , Reacción en Cadena de la Polimerasa/métodos , Ríos/microbiología , Ríos/virología , Microbiología del Agua/normas , Contaminantes del Agua/análisis , Análisis de Varianza , Animales , Bacteroides/genética , Bovinos , Pollos , Colifagos/genética , Enterobacteriaceae/genética , Heces/microbiología , Heces/virología , Humanos , Puerto Rico , Lluvia , Especificidad de la Especie , Clima TropicalRESUMEN
Multidrug resistant tuberculosis (MDR-TB) is defined as a Mycobacterium tuberculosis strain resistant to two or more first-line anti-tuberculous drugs. Tuberculosis (TB) is a global threat to society despite improvement in therapy as it continues to be an economic burden especially in underdeveloped countries. The downfall of global economics and growing travel destinations in developing countries has escalade the exposure of organism not previously encountered in industrialized nations. Most cases of MDR-TB are reported on immunosuppressed patients with risk factors and from endemic areas. Nevertheless new strains with higher transmission degree are emerging as a threat in patients who have low risk factors for the development of MDR-TB.
RESUMEN
The presented data provides additional information about the assessment of affinity purified nicotinic acetylcholine receptor (nAChR) rich membrane solubilized with long chain (16 saturated carbons) lysophospholipid with glycerol headgroup (LFG-16). The assessment of stability and functionality of solubilized membrane protein is a critical step prior to further crystallization trails. One of the key factors for this task is the appropriate choice of a detergent that can support nAChR activity and stability comparable to the crude membranes. The stability of the nAChR-LFG-16 complex incorporated into lipid cubic phase (LCP) was monitored for a period of 30 days by means of fluorescence recovery after photobleaching (FRAP) and the functionality was evaluated after its incorporation into Xenopus oocyte by means of the two electrode voltage clamp technique.