Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2306899120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903262

RESUMEN

Taxonomic data are a scientific common. Unlike nomenclature, which has strong governance institutions, there are currently no generally accepted governance institutions for the compilation of taxonomic data into an accepted global list. This gap results in challenges for conservation, ecological research, policymaking, international trade, and other areas of scientific and societal importance. Consensus on a global list and its management requires effective governance and standards, including agreed mechanisms for choosing among competing taxonomies and partial lists. However, governance frameworks are currently lacking, and a call for governance in 2017 generated critical responses. Any governance system to which compliance is voluntary requires a high level of legitimacy and credibility among those by and for whom it is created. Legitimacy and credibility, in turn, require adequate and credible consultation. Here, we report on the results of a global survey of taxonomists, scientists from other disciplines, and users of taxonomy designed to assess views and test ideas for a new system of taxonomic list governance. We found a surprisingly high degree of agreement on the need for a global list of accepted species and their names, and consistent views on what such a list should provide to users and how it should be governed. The survey suggests that consensus on a mechanism to create, manage, and govern a single widely accepted list of all the world's species is achievable. This finding was unexpected given past controversies about the merits of list governance.


Asunto(s)
Comercio , Médicos , Humanos , Internacionalidad
2.
PLoS Biol ; 18(7): e3000736, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32634138

RESUMEN

Lists of species underpin many fields of human endeavour, but there are currently no universally accepted principles for deciding which biological species should be accepted when there are alternative taxonomic treatments (and, by extension, which scientific names should be applied to those species). As improvements in information technology make it easier to communicate, access, and aggregate biodiversity information, there is a need for a framework that helps taxonomists and the users of taxonomy decide which taxa and names should be used by society whilst continuing to encourage taxonomic research that leads to new species discoveries, new knowledge of species relationships, and the refinement of existing species concepts. Here, we present 10 principles that can underpin such a governance framework, namely (i) the species list must be based on science and free from nontaxonomic considerations and interference, (ii) governance of the species list must aim for community support and use, (iii) all decisions about list composition must be transparent, (iv) the governance of validated lists of species is separate from the governance of the names of taxa, (v) governance of lists of accepted species must not constrain academic freedom, (vi) the set of criteria considered sufficient to recognise species boundaries may appropriately vary between different taxonomic groups but should be consistent when possible, (vii) a global list must balance conflicting needs for currency and stability by having archived versions, (viii) contributors need appropriate recognition, (ix) list content should be traceable, and (x) a global listing process needs both to encompass global diversity and to accommodate local knowledge of that diversity. We conclude by outlining issues that must be resolved if such a system of taxonomic list governance and a unified list of accepted scientific names generated are to be universally adopted.


Asunto(s)
Clasificación , Biodiversidad , Toma de Decisiones , Conocimiento , Reproducibilidad de los Resultados , Especificidad de la Especie
3.
Cell Mol Neurobiol ; 41(7): 1549-1561, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32683580

RESUMEN

Spaceflight and simulated microgravity both affect learning and memory, which are mostly controlled by the hippocampus. However, data about molecular alterations in the hippocampus in real or simulated microgravity conditions are limited. Adult Wistar rats were recruited in the experiments. Here we analyzed whether short-term simulated microgravity caused by 3-day hindlimb unloading (HU) will affect the glutamatergic and GABAergic systems of the hippocampus and how dynamic foot stimulation (DFS) to the plantar surface applied during HU can contribute in the regulation of hippocampus functioning. The results demonstrated a decreased expression of vesicular glutamate transporters 1 and 2 (VGLUT1/2) in the hippocampus after 3 days of HU, while glutamate decarboxylase 67 (GAD67) expression was not affected. HU also significantly induced Akt signaling and transcriptional factor CREB that are supposed to activate the neuroprotective mechanisms. On the other hand, DFS led to normalization of VGLUT1/2 expression and activity of Akt and CREB. Analysis of exocytosis proteins revealed the inhibition of SNAP-25, VAMP-2, and syntaxin 1 expression in DFS group proposing attenuation of excitatory neurotransmission. Thus, we revealed that short-term HU causes dysregulation of glutamatergic system of the hippocampus, but, at the same time, stimulates neuroprotective Akt-dependent mechanism. In addition, most importantly, we demonstrated positive effect of DFS on the hippocampus functioning that probably depends on the regulation of neurotransmitter exocytosis.


Asunto(s)
Suspensión Trasera/fisiología , Hipocampo/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Masculino , Ratas Wistar
4.
J Org Chem ; 86(1): 322-332, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347755

RESUMEN

A new convenient and versatile halogenating system (R4NHal/NOHSO4), giving straightforward and general access to halogenated 3,5-diaryl- and alkylarylisoxazoles, pyrazoles and electron-rich benzenes from the corresponding scaffolds, is suggested. The method provides excellent regioselectivity, scalability to the gram scale, and a broad scope for both aromatics and halogens. A three-step, one-pot reaction protocol was developed, and a series of 3,5-diaryl-4-haloisoxazoles has been efficiently synthesized from 1,2-diarylcyclopropanes under suggested nitrosating-halogenating conditions.

5.
J Am Soc Nephrol ; 28(4): 1073-1078, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27799484

RESUMEN

Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as a major regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders.


Asunto(s)
Síndrome de Fanconi/etiología , Nefronas , Receptores Acoplados a Proteínas G/fisiología , Receptores Virales/fisiología , Raquitismo Hipofosfatémico/etiología , Animales , Femenino , Masculino , Ratones , Receptor de Retrovirus Xenotrópico y Politrópico
6.
J Eukaryot Microbiol ; 64(4): 539-554, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061024

RESUMEN

Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN-BC proposes to populate The Ciliate Guide, an online database, with biodiversity-related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data.


Asunto(s)
Cilióforos/clasificación , Bases de Datos Factuales , Biodiversidad , Cilióforos/genética , Internet , Filogenia
7.
J Am Soc Nephrol ; 27(10): 2997-3004, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27056296

RESUMEN

The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Diuréticos/metabolismo , Furosemida/metabolismo , Riñón/metabolismo , Metaboloma/genética , Animales , Diuréticos/sangre , Furosemida/sangre , Ratones , Nefronas
8.
Biochim Biophys Acta ; 1851(3): 239-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25499607

RESUMEN

Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-ß-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells.


Asunto(s)
Gangliósido G(M1)/análogos & derivados , Gangliósido G(M1)/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Microdominios de Membrana/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Bovinos , Supervivencia Celular/efectos de los fármacos , Dinoprostona/antagonistas & inhibidores , Dinoprostona/biosíntesis , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Escherichia coli/química , Regulación de la Expresión Génica , Lipopolisacáridos/toxicidad , Masculino , Microdominios de Membrana/metabolismo , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células PC12 , Cultivo Primario de Células , Transporte de Proteínas , Rana temporaria , Ratas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/citología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , beta-Ciclodextrinas/farmacología
9.
J Am Soc Nephrol ; 23(6): 1019-26, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440902

RESUMEN

The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.


Asunto(s)
Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Sodio/metabolismo , Aldosterona/análisis , Aldosterona/sangre , Animales , Proteínas CLOCK/genética , Modelos Animales de Enfermedad , Homeostasis/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Capacidad de Concentración Renal , Túbulos Renales Colectores/metabolismo , Modelos Lineales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Aleatoria , Sistema Renina-Angiotensina/fisiología , Sensibilidad y Especificidad , Sodio/orina , Transcriptoma/genética
10.
Neurol Res ; 45(10): 957-968, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642364

RESUMEN

OBJECTIVES: Hindlimb unloading (HU), widely used to simulate microgravity effects, is known to induce a stress response. However, as single-housed animals are usually used in such experiments, social isolation (SI) stress can affect experimental results. In the present study, we aimed to delineate stressful effects of 3-day HU and SI in mice. METHODS: Three animal groups, HU, SI, and group-housed (GH) control mice, were recruited. A comprehensive analysis of stress-related markers was performed using ELISA, western blotting, and immunohistochemistry. RESULTS: Our results showed that blood corticosterone and activity of glucocorticoid receptors and cAMP response element-binding protein (CREB) in the hippocampus of SI and HU animals did not differ from GH control. However, SI mice demonstrated upregulation of the hippocampal corticotropin-releasing hormone (CRH), inducible NO synthase (iNOS), vesicular glutamate transporter 1 (VGLUT1), and glutamate decarboxylases 65/67 (GAD65/67) along with activation of Fos-related antigen 1 (Fra-1) in the amygdala confirming the expression of stress. In HU mice, the same increase in GAD65/67 and Fra-1 indicated the contribution of SI. The special HU effect was expressed only in neurogenesis attenuation. DISCUSSION: Thus, our data indicated that 3-day HU could not be characterized as physiological stress, but SI stress contributed to the negative effects of HU.


Asunto(s)
Amígdala del Cerebelo , Suspensión Trasera , Animales , Ratones , Western Blotting , Corticosterona , Aislamiento Social
11.
Dev Neurobiol ; 83(5-6): 205-218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37489016

RESUMEN

The nigrostriatal system composed of the dorsal striatum and the substantia nigra (SN) is highly involved in the control of motor behavior. Various extremal and pathological conditions as well as social isolation (SI) may cause an impairment of locomotor function; however, corresponding alterations in the nigrostriatal dopaminergic pathway are far from full understanding. Here, we analyzed the effect of 3-day hindlimb unloading (HU) and SI on the key players of dopamine transmission in the nigrostriatal system of CD1 mice. Three groups of mice were analyzed: group-housed (GH), SI, and HU animals. Our data showed a significant decrease in the expression and phosphorylation of tyrosine hydroxylase (TH) in the SN and dorsal striatum of HU mice that suggested attenuation of dopamine synthesis in response to HU. In the dorsal striatum of HU mice, the downregulation of TH expression was also observed indicating the effect of unloading; however, TH phosphorylation at Ser40 was mainly affected by SI pointing on an impact of isolation too. Expression of dopamine receptors D1 in the dorsal striatum of HU mice was increased suggesting a compensatory response, but the activity of downstream signaling pathways involving protein kinase A and cAMP response element-binding protein was inhibited. At the same time, SI alone did not affect expression of DA receptors and activity of downstream signaling in the dorsal striatum. Obtained data let us to conclude that HU was the main factor which impaired dopamine transmission in the nigrostriatal system but SI made some contribution to its negative effects.


Asunto(s)
Dopamina , Suspensión Trasera , Ratones , Animales , Dopamina/metabolismo , Encéfalo/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Transducción de Señal , Tirosina 3-Monooxigenasa/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología
12.
J Am Soc Mass Spectrom ; 34(11): 2547-2555, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812762

RESUMEN

The fragmentation reaction of the radical cations of 3-aryl-5-fluoroisoxazoles formed via EI-MS is described. A new rearrangement accompanied by fluorine atom migration is discovered. A mechanistic rationale for the rearrangement supporting the existence of a fluorinated benzocyclopropenyl cation was proposed based on the experimental data and quantum chemical calculations.

13.
Am J Physiol Regul Integr Comp Physiol ; 303(10): R1042-52, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23019216

RESUMEN

As in mammals, epithelium of the amphibian urinary bladder forms a barrier to pathogen entry and is a first line of defense against penetrating microorganisms. We investigated the effect of Escherichia coli LPS on generation of nitric oxide (NO), a critically important mediator during infectious processes, by primary cultured frog (Rana temporaria) urinary bladder epithelial cells (FUBEC). It was found that FUBEC constitutively express Toll-like receptor 4 (TLR4), a receptor of LPS, and respond to LPS (10 µg/ml) by stimulation of inducible nitric oxide synthase (iNOS) mRNA/protein expression and NOS activity measured by nitrite produced in the culture medium and by citrulline assay. We characterized uptake of l-arginine, a precursor in NO synthesis, by FUBEC and showed that it is mediated mainly by the y+ cationic amino acid transport system. LPS stimulated l-arginine uptake, and this effect was blocked by the iNOS inhibitor 1400W. Arginase II was found to be expressed in FUBEC. Inhibition of arginase activity by (S)-(boronoethyl)-l-cysteine increased generation of NO, suggesting contribution of arginase to NO production via competing with NOS for the substrate. LPS altered neither total arginase activity nor arginase II expression. Among epithelial cells, phagocytic macrophage-like cells were observed, but they did not contribute to LPS-induced NO production. These data demonstrate that amphibian urinary bladder epithelial cells recognize LPS and respond to it by increased generation of NO via stimulation of iNOS expression and l-arginine uptake, which appears to be essential for the regulation of the innate immune response and the inflammation in bladder epithelium.


Asunto(s)
Células Epiteliales/metabolismo , Lipopolisacáridos/toxicidad , Ranidae/fisiología , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/fisiología , Urotelio/citología , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptor Toll-Like 4/genética
14.
Proc Natl Acad Sci U S A ; 106(38): 16523-8, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19805330

RESUMEN

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Túbulos Renales/metabolismo , Animales , Acuaporina 2/genética , Acuaporina 4/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Presión Sanguínea , Proteínas CLOCK , Proteínas de Unión al ADN/genética , Electrólitos/sangre , Capacidad de Concentración Renal , Túbulos Renales/fisiología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Receptores Citoplasmáticos y Nucleares/genética , Factores de Tiempo , Transactivadores/genética , Factores de Transcripción/genética , Urodinámica
15.
Life (Basel) ; 11(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067876

RESUMEN

Adult neurogenesis is a flexible process that depends on the environment and correlates with cognitive functions. Cognitive functions are impaired by various factors including space flight conditions and reduced physical activity. Physically active life significantly improves both cognition and the hippocampal neurogenesis. Here, we analyzed how 3-day simulated microgravity caused by hindlimb unloading (HU) or dynamic foot stimulation (DFS) during HU can affect the hippocampal neurogenesis. Adult Wistar rats were recruited in the experiments. The results demonstrated a decrease in the number of doublecortine (DCX) positive neural progenitors, but proliferation in the subgranular zone of the dentate gyrus was not changed after 3-day HU. Analysis of the effects of DFS showed restoration of neural progenitor population in the subgranular zone of the dentate gyrus. Additionally, we analyzed activity of the cRaf/ERK1/2 pathway, which is one of the major players in the regulation of neuronal differentiation. The results demonstrated inhibition of cRaf/ERK1/2 signaling in the hippocampus of HU rats. In DFS rats, no changes in the activity of cRaf/ERK1/2 were observed. Thus, we demonstrated that the process of neurogenesis fading during HU begins with inhibition of the formation of immature neurons and associated ERK1/2 signaling activity, while DFS prevents the development of mentioned alterations.

16.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209771

RESUMEN

The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm-1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8-30.9%), followed by laboratory conditions (16.0-23.3%), and lowest in Russia (13.2-22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates.

17.
Acta Physiol (Oxf) ; 229(3): e13457, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32072766

RESUMEN

AIM: Arginase 2 (ARG2) is a mitochondrial enzyme that catalyses hydrolysis of l-arginine into urea and l-ornithine. In the kidney, ARG2 is localized to the S3 segment of the proximal tubule. It has been shown that expression and activity of this enzyme are upregulated in a variety of renal pathologies, including ischemia-reperfusion (IR) injury. However, the (patho)physiological role of ARG2 in the renal tubule remains largely unknown. METHODS: We addressed this question in mice with conditional knockout of Arg2 in renal tubular cells (Arg2lox/lox /Pax8-rtTA/LC1 or, cKO mice). RESULTS: We demonstrate that cKO mice exhibit impaired urea concentration and osmolality gradients along the corticomedullary axis. In a model of unilateral ischemia-reperfusion injury (UIRI) with an intact contralateral kidney, ischemia followed by 24 hours of reperfusion resulted in significantly more pronounced histological damage in ischemic kidneys from cKO mice compared to control and sham-operated mice. In parallel, UIRI-subjected cKO mice exhibited a broad range of renal functional abnormalities, including albuminuria and aminoaciduria. Fourteen days after UIRI, the cKO mice exhibited complex phenotype characterized by significantly lower body weight, increased plasma levels of early predictive markers of kidney disease progression (asymmetric dimethylarginine and symmetric dimethylarginine), impaired mitochondrial function in the ischemic kidney but no difference in kidney fibrosis as compared to control mice. CONCLUSION: Collectively, these results establish the role of ARG2 in the formation of corticomedullary urea and osmolality gradients and suggest that this enzyme attenuates kidney damage in ischemia-reperfusion injury.


Asunto(s)
Arginasa , Riñón/patología , Daño por Reperfusión , Animales , Arginasa/fisiología , Túbulos Renales , Ratones , Ratones Noqueados , Urea
18.
Artículo en Inglés | MEDLINE | ID: mdl-30660802

RESUMEN

Previously we showed that arginine-vasotocin (AVT)-stimulated osmotic water permeability (OWP) of the frog urinary bladder was decreased if the mucosal side of the bladder has been naturally colonized by Gram-negative bacteria, or if bacterial lipopolysaccharide (LPS) was introduced into the lumen of the isolated bladder (J. Exp. Zool., 2013, 319, 487-494). Taking into account that in different tissues and cell types, challenge with LPS causes significant metabolic shift and energy deficiency, we hypothesized that an LPS-induced decrease of AVT-stimulated OWP could depend on the reduction of fatty acid oxidation (FAO), which is important for generation of ATP in epithelia. Using an isolated frog Rana temporaria urinary bladder we showed that the AVT-induced increase of OWP did not depend on the external glucose, but was inhibited by oligomycin, an ATP-synthase inhibitor, and by etomoxir, an inhibitor of carnitine palmitoyltransferase-1. In primary cultured epithelial cells isolated from the bladder mucosa, LPS E. coli (25 µg/ml, 21 h), as well as etomoxir (100 µM), decreased FAO accompanied by triacylglycerol accumulation. Both drugs impaired mitochondrial functions demonstrated by decreased ATP production and a reduced maximal oxygen consumption rate (OCR) and OCR directed at ATP synthesis. Additionally, we found that LPS decreased the expression of peroxisome proliferator-activated receptor alpha, a key player in the regulation of FAO. These data indicate that the impairment of AVT-induced water transport in osmoregulatory epithelium caused by LPS depends at least partly on defects in FAO and FAO-dependent energy production.


Asunto(s)
Lipopolisacáridos/toxicidad , Ósmosis/efectos de los fármacos , Rana temporaria , Vejiga Urinaria/efectos de los fármacos , Agua/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Células Epiteliales/efectos de los fármacos , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Peroxidación de Lípido , Masculino , Ósmosis/fisiología , Vejiga Urinaria/citología , Vejiga Urinaria/fisiología
19.
Sci Rep ; 9(1): 16089, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695128

RESUMEN

Glomerular filtration rate (GFR), or the rate of primary urine formation, is the key indicator of renal function. Studies have demonstrated that GFR exhibits significant circadian rhythmicity and, that these rhythms are disrupted in a number of pathologies. Here, we tested a hypothesis that the circadian rhythm of GFR is driven by intrinsic glomerular circadian clocks. We used mice lacking the circadian clock protein BMAL1 specifically in podocytes, highly specialized glomerular cells critically involved in the process of glomerular filtration (Bmal1lox/lox/Nphs2-rtTA/LC1 or, cKO mice). Circadian transcriptome profiling performed on isolated glomeruli from control and cKO mice revealed that the circadian clock controls expression of multiple genes encoding proteins essential for normal podocyte function. Direct assessment of glomerular filtration by inulin clearance demonstrated that circadian rhythmicity in GFR was lost in cKO mice that displayed an ultradian rhythm of GFR with 12-h periodicity. The disruption of circadian rhythmicity in GFR was paralleled by significant changes in circadian patterns of urinary creatinine, sodium, potassium and water excretion and by alteration in the diurnal pattern of plasma aldosterone levels. Collectively, these results indicate that the intrinsic circadian clock in podocytes participate in circadian rhythmicity of GFR.


Asunto(s)
Relojes Circadianos , Riñón/fisiología , Podocitos/fisiología , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Ritmo Circadiano , Tasa de Filtración Glomerular , Masculino , Ratones , Ratones Noqueados , Potasio/metabolismo , Sodio/metabolismo , Ritmo Ultradiano
20.
Bioresour Technol ; 99(15): 7412-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18280149

RESUMEN

Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.


Asunto(s)
Anaerobiosis , Reactores Biológicos , Industria Lechera , Estiércol , Goma/química , Zeolitas/química , Animales , Bovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA