Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pathol ; 250(5): 612-623, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32057095

RESUMEN

Tumours evolve to cope with environmental stresses or challenges such as nutrient starvation, depletion of survival factors, and unbalanced mechanical forces. The uncontrolled growth and aberrant deregulation of core cell homeostatic pathways induced by genetic mutations create an environment of stress. Here, we explore how the adaptations of tumours to the changing environment can drive changes in the motility machinery of cells, affecting migration, invasion, and metastasis. Tumour cells can invade individually or collectively, or they can be extruded out of the surrounding epithelium. These mechanisms are thought to be modifications of normal processes occurring during development or tissue repair. Therefore, tumours may activate these pathways in response to environmental stresses, enabling them to survive in hostile environments and spread to distant sites. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Movimiento Celular/inmunología , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología , Microambiente Tumoral/fisiología , Humanos , Transducción de Señal/fisiología , Estrés Fisiológico/fisiología
2.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498827

RESUMEN

Coenzyme A (CoA) is an essential cofactor present in all living cells. Under physiological conditions, CoA mainly functions to generate metabolically active CoA thioesters, which are indispensable for cellular metabolism, the regulation of gene expression, and the biosynthesis of neurotransmitters. When cells are exposed to oxidative or metabolic stress, CoA acts as an important cellular antioxidant that protects protein thiols from overoxidation, and this function is mediated by protein CoAlation. CoA and its derivatives are strictly maintained at levels controlled by nutrients, hormones, metabolites, and cellular stresses. Dysregulation of their biosynthesis and homeostasis has deleterious consequences and has been noted in a range of pathological conditions, including cancer, diabetes, Reye's syndrome, cardiac hypertrophy, and neurodegeneration. The biochemistry of CoA biosynthesis, which involves five enzymatic steps, has been extensively studied. However, the existence of a CoA biosynthetic complex and the mode of its regulation in mammalian cells are unknown. In this study, we report the assembly of all five enzymes that drive CoA biosynthesis, in HEK293/Pank1ß and A549 cells, using the in situ proximity ligation assay. Furthermore, we show that the association of CoA biosynthetic enzymes is strongly upregulated in response to serum starvation and oxidative stress, whereas insulin and growth factor signaling downregulate their assembly.


Asunto(s)
Vías Biosintéticas/genética , Coenzima A/metabolismo , Regulación de la Expresión Génica , Estrés Oxidativo , Células A549 , Coenzima A/biosíntesis , Células HEK293 , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal
3.
Elife ; 132024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712822

RESUMEN

Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.


Pancreatic cancer is an aggressive disease with limited treatment options. It is also associated with high rates of metastasis ­ meaning it spreads to other areas of the body. Environmental pressures, such as a lack of the nutrients metastatic cancer cells need to grow and divide, can change how the cells behave. Understanding the changes that allow cancer cells to respond to these pressures could reveal new treatment options for pancreatic cancer. When nutrients are scarce, metastatic cancer cells can gather molecules and nutrients by capturing large amounts of the fluid that surrounds them using a mechanism called macropinocytosis. They can also migrate to areas of the body with higher nutrient levels, through a process called chemotaxis. This involves cells moving towards areas with higher levels of certain molecules. For example, cancer cells migrate towards high levels of a lipid called lysophosphatidic acid, which promotes their growth and survival. A newly discovered protein known as CYRI-B has recently been shown to regulate how cells migrate and take up nutrients. It also interacts with proteins known to be involved in pancreatic cancer progression. Therefore, Nikolaou et al. set out to investigate whether CYRI-B also plays a role in metastatic pancreatic cancer. Experiments in a mouse model of pancreatic cancer showed that CYRI-B levels were high in pancreatic tumour cells. And when the gene for CYRI-B was removed from the tumour cells, they did not metastasise. Further analysis revealed that CYRI-B controls uptake and processing of nutrients and other signalling molecules through macropinocytosis. In particular, it ensures uptake of the receptor for lysophosphatidic acid, allowing the metastatic cancer cells to migrate. The findings of Nikolaou et al. reveal that CYRI-B is involved in metastasis of cancer cells in a mouse model of pancreatic cancer. This new insight into how metastasis is controlled could help to identify future targets for treatments that aim to prevent pancreatic cancer cells spreading to distant sites.


Asunto(s)
Neoplasias Pancreáticas , Pinocitosis , Receptores del Ácido Lisofosfatídico , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Metástasis de la Neoplasia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética
4.
Structure ; 29(3): 226-237.e4, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217330

RESUMEN

Rac1 is a major regulator of actin dynamics, with GTP-bound Rac1 promoting actin assembly via the Scar/WAVE complex. CYRI competes with Scar/WAVE for interaction with Rac1 in a feedback loop regulating actin dynamics. Here, we reveal the nature of the CYRI-Rac1 interaction, through crystal structures of CYRI-B lacking the N-terminal helix (CYRI-BΔN) and the CYRI-BΔN:Rac1Q61L complex, providing the molecular basis for CYRI-B regulation of the Scar/WAVE complex. We reveal CYRI-B as having two subdomains - an N-terminal Rac1 binding subdomain with a unique Rac1-effector interface and a C-terminal Ratchet subdomain that undergoes conformational changes induced by Rac1 binding. Finally, we show that the CYRI protein family, CYRI-A and CYRI-B can produce an autoinhibited hetero- or homodimers, adding an additional layer of regulation to Rac1 signaling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas Mitocondriales/química , Proteína de Unión al GTP rac1/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Secuencia Conservada , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Proteína de Unión al GTP rac1/metabolismo
5.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165494

RESUMEN

The Scar/WAVE complex drives actin nucleation during cell migration. Interestingly, the same complex is important in forming membrane ruffles during macropinocytosis, a process mediating nutrient uptake and membrane receptor trafficking. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A, has not been characterized. Here, we implicate CYRI-A as a key regulator of macropinosome formation and integrin internalization. We find that CYRI-A is transiently recruited to nascent macropinosomes, dependent on PI3K and RAC1 activity. CYRI-A recruitment precedes RAB5A recruitment but follows sharply after RAC1 and actin signaling, consistent with it being a local inhibitor of actin polymerization. Depletion of both CYRI-A and -B results in enhanced surface expression of the α5ß1 integrin via reduced internalization. CYRI depletion enhanced migration, invasion, and anchorage-independent growth in 3D. Thus, CYRI-A is a dynamic regulator of macropinocytosis, functioning together with CYRI-B to regulate integrin trafficking.


Asunto(s)
Endosomas/metabolismo , Integrina alfa5beta1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Mitocondriales/genética , Pinocitosis/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Actinas/genética , Actinas/metabolismo , Animales , Células COS , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Chlorocebus aethiops , Endosomas/patología , Endosomas/ultraestructura , Regulación de la Expresión Génica , Células HEK293 , Humanos , Integrina alfa5beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Polimerizacion , Transporte de Proteínas , Transducción de Señal , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
6.
Dev Cell ; 48(3): 287-288, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30753832

RESUMEN

How cells breach basement membrane barriers remains an area of active research. In this issue of Developmental Cell, Kelley et al. (2019) reveal that the C. elegans anchor cell uses physical force to breach basement membrane in the absence of matrix metalloproteases during its developmental invasion.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Actinas , Adenosina Trifosfato , Animales , Membrana Basal , Metaloproteinasas de la Matriz , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA