Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 93(34): 11701-11709, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34461730

RESUMEN

Off-line combination of countercurrent separation (CCS) and quantitative 1H NMR (qHNMR) methodologies enabled the systematic dissection and gravimetric quantification of a chemically complex Rhodiola rosea crude extract (RCE). The loss-free nature and high selectivity of CCS achieved the quantitative discrimination of fatty acids (FAs), sugars, and proanthocyanidins (PACs) from ten other metabolite classes: phenylpropanoids, phenylethanoids, acyclic monoterpenoid glycosides, pinene derived glycosides, benzyl alcohol glycosides, cyanogenic glycosides, flavonoids, gallic acids, methylparabens, and cuminol glycosides. The ability of CCS to remove ("knockout") PACs completely resolved challenges with baselines that plague NMR and UHPLC analyses and produce inaccurate integral and AUC quantitation, respectively. NMR analysis of the non-PAC fractions enabled unambiguous identification of metabolites and their characteristic resonances for subsequent multitarget absolute quantification by qHNMR using a single, nonidentical internal calibrant (IC). An orthogonal LC-MS/MS method validated the gravimetric nature of the CCS-qHNMR analytical tandem. Underlying this LC-based cross-validation, comprehensive phytochemical isolation and characterization established 19 single-compound reference standards that represented all ten metabolite classes. Finally, quantum mechanical 1H iterative Full Spin Analysis (HiFSA) of each standard provided a blueprint for future structural dereplication, identification, and quantification of Rhodiola marker constituents. The combination of two gravimetric analytical methods, loss-free CCS and IC-qHNMR, realizes the first chemical standardization of a botanical material that comprehensively captures a metabolome and permits absolute quantification.


Asunto(s)
Rhodiola , Cromatografía Liquida , Distribución en Contracorriente , Metaboloma , Espectrometría de Masas en Tándem
2.
Planta Med ; 87(12-13): 998-1007, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33975359

RESUMEN

Prenyl moieties are commonly encountered in the natural products of terpenoid and mixed biosynthetic origin. The reactivity of unsaturated prenyl motifs is less recognized and shown here to affect the acyclic Rhodiola rosea monoterpene glycoside, kenposide A (8: ), which oxidizes readily on silica gel when exposed to air. The major degradation product mediated under these conditions was a new aldehyde, 9: . Exhibiting a shortened carbon skeleton formed through the breakdown of the terminal isopropenyl group, 9: is prone to acetalization in protic solvents. Further investigation of minor degradation products of both 8: and 8-prenylapigenin (8-PA, 12: ), a flavonoid with an ortho-prenyl substituent, revealed that the aldehyde formation was likely realized through epoxidation and subsequent cleavage at the prenyl olefinic bond. Employment of 1H NMR full spin analysis (HiFSA) achieved the assignment of all chemical shifts and coupling constants of the investigated terpenoids and facilitated the structural validation of the degradation product, 9: . This study indicates that prenylated compounds are generally susceptible to oxidative degradation, particularly in the presence of catalytic mediators, but also under physiological conditions. Such oxidative artifact/metabolite formation leads to a series of compounds with prenyl-derived (cyclic) partial structures that are analogous to species formed during Phase I metabolism in vivo. Phytochemical and pharmacological studies should take precautions or at least consider the impact of (unavoidable) exposure of prenyl-containing compounds to catalytic and/or oxidative conditions.


Asunto(s)
Productos Biológicos , Artefactos , Neopreno , Gel de Sílice
3.
J Nat Prod ; 83(6): 1950-1959, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32463230

RESUMEN

NMR- and MS-guided metabolomic mining for new phytoconstituents from a widely used dietary supplement, Rhodiola rosea, yielded two new (+)-myrtenol glycosides, 1 and 2, and two new cuminol glycosides, 3 and 4, along with three known analogues, 5-7. The structures of the new compounds were determined by extensive spectroscopic data analysis. Quantum mechanics-driven 1H iterative full spin analysis (QM-HiFSA) decoded the spatial arrangement of the methyl groups in 1 and 2, as well as other features not recognizable by conventional methods, including higher order spin-coupling effects. Expanding applied HiFSA methodology to monoterpene glycosides advances the toolbox for stereochemical assignments, facilitates their structural dereplication, and provides a more definitive reference point for future phytochemical and biological studies of R. rosea as a resilience botanical. Application of a new NMR data analysis software package, CT, for QM-based iteration of NMR spectra is also discussed.


Asunto(s)
Monoterpenos/química , Rhodiola/química , Glicósidos/química , Hidrólisis , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA