Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
R Soc Open Sci ; 7(9): 201266, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33047067

RESUMEN

This study involves the generation of gold nanoparticles (Au NPs) via a novel natural/non-toxic methodology using tea and orange-peel extracts. These were then embedded into a novel blend composed of a polyethylene oxide and gelatin (PEO-Gel) fibre mat. The scanning electron microscopy results indicated that the addition of both collagen (COL) and ascorbic acid (AA) into the PEO-Gel system (PEO-Gel-AA-COL system) enhances the Au NP incorporation into nanofibres leading to a diameter of 164.60 ± 20.95 and 192.43 ± 39.14 nm in contrast to the spraying observed with the Au PEO-Gel system alone. Releasing studies conducted over 30 min indicated that the PEO-Gel-AA-COL-orange peel Au (OpAu) system accounts for a higher content of Au release than the green tea Au (GtAu) NP system where a maximum release could be attained within 10-30 min depending on the amount of Au NPs that have been incorporated. Moreover, the transdermal diffusion studies conducted using Strat membrane indicated that Au NPs from both formulations (PEO-Gel-AA-COL-GtAu nanofibre, PEO-Gel-AA-COL-OpAu nanofibre) have diffused through the stratum corneum and trapped in the dermis and epidermis indicating its transdermal deliverability. Additionally, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that nanofibres have similar radical scavenging activity like AA standard. Toxicity evaluation on a zebra fish embryo model confirmed that both GtAu NPs and OpAu NPs do not induce any teratogenic activity and are safe to be used in the range of 1.0-167 µg ml-1.

2.
Biomacromolecules ; 9(4): 1170-8, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18348532

RESUMEN

Synthetic polycations have shown promise as gene delivery vehicles but suffer from an unacceptable toxicity and low transfection efficiency. Novel architectures are being explored to increase transfection efficiency, including copolymers with a thermoresponsive character. The physicochemical characterization of a family of copolymers comprising a core of the cationic polymer poly(ethylene imine) (PEI) with differing thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) grafts has been carried out using pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS). For the copolymers that have longer chain PNIPAM grafts, there is clear evidence of the collapse of the grafts with increasing temperature and the associated emergence of an attractive interpolymer interaction. These facets depend on the number of PNIPAM grafts attached to the PEI core. While a collapse in the smaller PNIPAM grafts is observed for the third polymer, there is no appearance of the interpolymer attractive interaction. These observations provide further insight into the association behavior of these copolymers, which is fundamental to developing a full understanding of how they interact with nucleic acids. Furthermore, the differing behaviors of the three copolymers over temperatures in which the PNIPAM blocks undergo coil-to-globule transitions is indicative of changes in the presentation of charged-core and hydrophobic chain components, which are key factors affecting nucleic acid binding and, ultimately, cell transfection ability.


Asunto(s)
Resinas Acrílicas/química , Polietileneimina/química , Polímeros/química , Espectroscopía de Resonancia Magnética , Polímeros/síntesis química , Polímeros/metabolismo , Espectrofotometría Ultravioleta , Temperatura , Agua/química
3.
J Colloid Interface Sci ; 314(2): 460-9, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17602700

RESUMEN

The physical properties of weak polyelectrolytes may be tailored via hydrophobic modification to exhibit useful properties under appropriate pH and ionic strength conditions as a consequence of the often inherently competing effects of electrostatics and hydrophobicity. Pulsed-gradient spin-echo NMR (PGSE-NMR), electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS) surface tension, fluorescence, and pH titration have been used to examine the solution conformation and aggregation behavior of a series of hydrophobically modified hyperbranched poly(ethylene imine) (PEI) polymers in aqueous solution, and their interaction with sodium dodecylsulfate (SDS). PGSE-NMR gave a particularly insightful picture of the apparent molecular weight distribution. The presence of the hydrophobes led to a lower effective charge on the polymer at any given pH, compared to the (parent) nonmodified samples. Analysis of the SANS data showed that the propensity to form highly elliptical or rod-like aggregates at higher pHs, reflecting both the changes in protonation behavior induced by the hydrophobic modification and an hydrophobic interaction, but that these structures were disrupted with decreasing pH (increasing charge). The parent samples were not surface active yet the hydrophobically modified samples show pronounced surface activity and the presence of small hydrophobic domains. The surface activity increased with an increase in the degree of modification. On addition of SDS, the onset of the formation of polymer/surfactant complexes was insensitive to the degree of modification with the resultant PEI/SDS complexes resembling the size and shape of simple SDS micelles. Indeed, the presence of the SDS effectively nullifies the effects of the hydrophobe. Hydrophobic modification is therefore a viable option to tailor pH dependent properties, whose effects may be removed by the presence of surfactant.

4.
Int J Pharm ; 408(1-2): 213-22, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21316435

RESUMEN

Although water-soluble polymers are finding increasing use as polymer therapeutics, there has been little consideration of the effect of polymer stereochemistry on their physico-chemical and biological properties. The aim of this study was to investigate these properties using polymethacrylic acids (PMAs) of similar molecular weights with a difference in syndiotacticity of about 20% of rr triad content. Experiments to characterize the solution behaviour were conducted at pHs encountered during the transport, endocytic uptake and intracellular trafficking (7.4-3.0). These showed that with increasing rr triads, the polymer become less hydrophobic, a stronger acid, displayed a locally ordered solution conformation at pH 5.5, and interacted more strongly with dodecyl trimethylammonium bromide (DTAB) micelles. Preliminary cytotoxicity experiments using B16F10 melanoma cells showed lower toxicity in the concentration range of 1-100 µg/mL with increased rr triads. These observations indicate that the higher content of rr triads could drive a chain organization that minimize the influence of negative charges and so underline the importance of further, systematic studies to investigate the effect of tacticity on the behaviour of polymers in respect of their pharmacokinetics, toxicity and efficacy.


Asunto(s)
Química Física , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía en Gel , Portadores de Fármacos/toxicidad , Endocitosis , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Peso Molecular , Ácidos Polimetacrílicos/síntesis química , Ácidos Polimetacrílicos/toxicidad , Soluciones , Estereoisomerismo , Tensión Superficial , Viscosidad
5.
Macromol Biosci ; 10(8): 963-73, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20533532

RESUMEN

The mechanism of ISA23 · HCl interaction with model membrane vesicles (80-100 nm in diameter) was investigated using EPR in conjunction with SANS. For EPR, 16-DSE was dissolved in the vesicle membrane to measure its dynamics and polarity, whereas a spin-labeled (Tempo)-ISA 23 analogue was used to give a measure of the polymer flexibility. When ISA23 was added to the external vesicle surface, no interaction was found. This observation conflicts with the reported ability to lyse RBC, but is in agreement with recent studies that showed no effect on membrane permeability when a PAA was added to an incubation medium containing isolated lysosomal vesicles. The vesicle-mimetic models used here provide a new and useful tool for studying endosomolytic polymer/membrane interactions.


Asunto(s)
Biomimética , Espectroscopía de Resonancia por Spin del Electrón/métodos , Endosomas/química , Membranas Intracelulares/química , Piperazinas/química , Poliaminas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA