Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dent Mater J ; 40(5): 1177-1188, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34121022

RESUMEN

This study aimed to investigate pulp chamber and surface temperature development using different LED light curing units (LCUs). Eight brands of LED-LCUs were tested in a laboratory bench model. The pulp chamber and surface temperature were recorded with a type T thermocouple and infrared cameras, respectively. The highest pulp chamber and surface temperature increase was 6.1±0.3°C and 20.1±1.7°C, respectively. Wide-spectrum LED-LCUs produced higher pulp chamber temperature increase at 0 mm and 2 mm but lower at 4 mm. Narrow-spectrum LED-LCUs produced higher surface temperature increase. LED-LCU featuring modulated output mode resulted in lower increase in pulp chamber temperature but higher on surface temperature. LED-LCU with light guide tip delivering an inhomogeneous beam caused higher increase in temperature on the surface and in the pulp chamber. LED-LCUs with different spectral emission, output mode and light guide tip design contributed to different temperature development in the pulp chamber and at the surface of teeth.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Cavidad Pulpar , Curación por Luz de Adhesivos Dentales , Temperatura
2.
Biomater Investig Dent ; 7(1): 86-95, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-33458692

RESUMEN

OBJECTIVE: To assess whether composite polymer resin delivered in compules include pores and the possible effect on the amount of porosity in dental restorations. METHOD AND MATERIALS: Original compules containing unpolymerised composite polymer resin (CPR) were scanned in a micro-CT. Four products were examined, which comprised universal composites (Herculite XRV Ultra, Ceram.X Universal, Tetric Evo Ceram) and a flowable bulk-fill composite (SDR) (n = 10 per group). The pore size distribution and amount of porosity (vol.%) were estimated for the unpolymerized and polymerized material used to restore a standardised cavity in a typodont tooth. Manufacturers' instructions were followed regarding material handling, and polymerisation by use of a calibrated light-curing unit. The pore characteristics and their size distribution, and the amount of porosity in the dental restoration were contrasted with the values measured in the compule. Non-parametric tests were used to analyse differences between the four products. RESULTS: All the composite polymer resin compules contained unpolymerised material that included pores. The universal composite compules included pores predominantly in the sub-100 µm sizes. In contrast, the flowable bulk-fill compules included a few pores with a diameter >100 µm, which were assumed to be air-bubbles. The unpolymerised material within the compule included consistently more pores compared to the extruded portion from the compule tip, and in the final restoration (p < .001). The amount of porosity in the restorations differed amongst the tested materials, with the flowable bulk-fill composite showing the lowest amount of porosity (p < .01).

3.
Clin Cosmet Investig Dent ; 12: 271-280, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32753976

RESUMEN

OBJECTIVE: The study aimed to investigate factors contributing to heat development during light curing of a flowable bulk-fill resin-based composite (SDRTM, Lot # 602000876, Dentsply Sirona, Konstanz, Germany) (RBC). MATERIALS AND METHODS: Temperatures were measured with calibrated thermocouples. A multi-wave light-emitting diode (LED) light curing unit (LCU) was used (Ivoclar Vivadent, Schaan, Lichtenstein). In all experiments, the RBC was first cured (cured) for 30 s and, after 5 min of recovery time, received a second LCU irradiation (post-cured) for 30 s. The exothermic reaction was measured by calculating the Δ temperature between cured and post-cured RBC. In a cylinder-shaped polymer mold, temperature was recorded inside of RBC during curing (part 1) and light transmission through RBC during curing was investigated (part 2). Pulpal temperatures were assessed in an extracted third molar during light curing (part 3). Data were statistically analyzed using one-way ANOVA (α=0.05). RESULTS: Increased thickness of RBC led to decreased pulp chamber temperatures. Inside RBC, there was a large variation in heat development between the cured and post-cured groups (p<0.05). The cured group absorbed more LCU irradiation than the post-cured group. CONCLUSION: The irradiance of the LCU seemed to be a more important factor than exothermic reaction of RBCs for pulp chamber heat development. Flowable bulk-fill RBCs can act as a pulpal insulator against LCU irradiation, despite their exothermic curing reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA