RESUMEN
We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of â¼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an â¼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.
Asunto(s)
Epilepsia , Membrana Celular/metabolismo , Niño , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Mutación , Potasio/metabolismo , Canales de Potasio/metabolismoRESUMEN
OBJECTIVE: About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hKV ) channel hKV 7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hKV 7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hKV 7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. METHODS: Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. RESULTS: Fourteen resin acid derivatives were tested on hKV 7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hKV 7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hKV 7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hKV 11.1, hNaV 1.5, or hCaV 1.2, or on the amplitude of hKV 11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. SIGNIFICANCE: The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.
Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/prevención & control , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Resinas Sintéticas/farmacología , Convulsiones/prevención & control , Animales , Carbamatos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Larva , Oocitos , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Especificidad por Sustrato , Xenopus laevis , Pez CebraRESUMEN
KEY POINTS: KV1.2 channels, encoded by the KCNA2 gene, regulate neuronal excitability by conducting K+ upon depolarization. A new KCNA2 missense variant was discovered in a patient with epilepsy, causing amino acid substitution F302L at helix S4, in the KV1.2 voltage-sensing domain. Immunocytochemistry and flow cytometry showed that F302L does not impair KCNA2 subunit surface trafficking. Molecular dynamics simulations indicated that F302L alters the exposure of S4 residues to membrane lipids. Voltage clamp fluorometry revealed that the voltage-sensing domain of KV1.2-F302L channels is more sensitive to depolarization. Accordingly, KV1.2-F302L channels opened faster and at more negative potentials; however, they also exhibited enhanced inactivation: that is, F302L causes both gain- and loss-of-function effects. Coexpression of KCNA2-WT and -F302L did not fully rescue these effects. The proband's symptoms are more characteristic of patients with loss of KCNA2 function. Enhanced KV1.2 inactivation could lead to increased synaptic release in excitatory neurons, steering neuronal circuits towards epilepsy. ABSTRACT: An exome-based diagnostic panel in an infant with epilepsy revealed a previously unreported de novo missense variant in KCNA2, which encodes voltage-gated K+ channel KV1.2. This variant causes substitution F302L, in helix S4 of the KV1.2 voltage-sensing domain (VSD). F302L does not affect KCNA2 subunit membrane trafficking. However, it does alter channel functional properties, accelerating channel opening at more hyperpolarized membrane potentials, indicating gain of function. F302L also caused loss of KV1.2 function via accelerated inactivation onset, decelerated recovery and shifted inactivation voltage dependence to more negative potentials. These effects, which are not fully rescued by coexpression of wild-type and mutant KCNA2 subunits, probably result from the enhancement of VSD function, as demonstrated by optically tracking VSD depolarization-evoked conformational rearrangements. In turn, molecular dynamics simulations suggest altered VSD exposure to membrane lipids. Compared to other encephalopathy patients with KCNA2 mutations, the proband exhibits mild neurological impairment, more characteristic of patients with KCNA2 loss of function. Based on this information, we propose a mechanism of epileptogenesis based on enhanced KV1.2 inactivation leading to increased synaptic release preferentially in excitatory neurons, and hence the perturbation of the excitatory/inhibitory balance of neuronal circuits.
Asunto(s)
Encefalopatías , Epilepsia , Sustitución de Aminoácidos , Epilepsia/genética , Humanos , Potenciales de la Membrana , MutaciónRESUMEN
Depolarization-evoked opening of CaV2.1 (P/Q-type) Ca2+-channels triggers neurotransmitter release, while voltage-dependent inactivation (VDI) limits channel availability to open, contributing to synaptic plasticity. The mechanism of CaV2.1 response to voltage is unclear. Using voltage-clamp fluorometry and kinetic modeling, we optically tracked and physically characterized the structural dynamics of the four CaV2.1 voltage-sensor domains (VSDs). VSD-I seems to directly drive opening and convert between two modes of function, associated with VDI. VSD-II is apparently voltage-insensitive. VSD-III and VSD-IV sense more negative voltages and undergo voltage-dependent conversion uncorrelated with VDI. Auxiliary ß -subunits regulate VSD-I-to-pore coupling and VSD conversion kinetics. CaV2.1 VSDs are differentially sensitive to voltage changes brief and long-lived. Specifically the voltage-dependent conformational changes of VSD-I are linked to synaptic release and plasticity.
RESUMEN
How G proteins inhibit N-type, voltage-gated, calcium-selective channels (CaV2.2) during presynaptic inhibition is a decades-old question. G proteins Gßγ bind to intracellular CaV2.2 regions, but the inhibition is voltage dependent. Using the hybrid electrophysiological and optical approach voltage-clamp fluorometry, we show that Gßγ acts by selectively inhibiting a subset of the four different CaV2.2 voltage-sensor domains (VSDs I to IV). During regular "willing" gating, VSD-I and -IV activations resemble pore opening, VSD III activation is hyperpolarized, and VSD II appears unresponsive to depolarization. In the presence of Gßγ, CaV2.2 gating is "reluctant": pore opening and VSD I activation are strongly and proportionally inhibited, VSD IV is modestly inhibited, while VSD III is not. We propose that Gßγ inhibition of VSDs I and IV underlies reluctant CaV2.2 gating and subsequent presynaptic inhibition.
Asunto(s)
Canales de Calcio Tipo N , Activación del Canal Iónico , Canales de Calcio Tipo N/metabolismo , Animales , Humanos , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Unión ProteicaRESUMEN
How G-proteins inhibit N-type, voltage-gated, calcium-selective channels (Ca V 2.2) during presynaptic inhibition is a decades-old question. G-proteins Gßγ bind to intracellular Ca V 2.2 regions, but the inhibition is voltage-dependent. Using the hybrid electrophysiological and optical approach voltage-clamp fluorometry, we show that Gßγ acts by selectively inhibiting a subset of the four different Ca V 2.2 voltage-sensor domains (VSDs I-IV). During regular "willing" gating, VSDs I and IV activation resemble pore opening, VSD III activation is hyperpolarized, and VSD II appears unresponsive to depolarization. In the presence of Gßγ, Ca V 2.2 gating is "reluctant": pore opening and VSD-I activation are strongly and proportionally inhibited, VSD IV is modestly inhibited while VSD III is not. We propose that Gßγ inhibition of VSD-I and -IV underlies reluctant Ca V 2.2 gating and subsequent presynaptic inhibition.
RESUMEN
The TCA cycle intermediate metabolite 'succinate' has been proposed as an inflammatory mediator, influencing autoimmunity and allergic reactions, through ligation to its sensing receptor SUCNR1/GPR91. Whether GPR91-mediated signalling influences the chronic inflammatory process of atherosclerosis has never been investigated. The examination of publicly available datasets revealed that the SUCNR1 gene is expressed in human atherosclerotic plaques, especially in vascular smooth muscle cells. Using GPR91 knockout (Gpr91-/-) and wildtype (WT) littermates, made hyperlipidaemic with the overexpression of the gain-of-function mutated Pcsk9 and Western diet feeding, we showed that the full ablation of GPR91 did not accelerate atherosclerosis-lesions in the aortic arch 2.18 ± 0.48% vs. 1.64 ± 0.31%, and in the aortic roots 10.06 ± 0.91% vs. 10.67 ± 1.53% for Gpr91-/- and WT mice, respectively. In line with this, no differences between groups were observed for macrophage and T-cell infiltration in the plaque, as well as the polarization towards M1- or M2-like macrophages in the aorta, spleen and liver of Gpr91-/- and WT control mice. In conclusion, our study indicates that the global ablation of GPR91 signalling does not influence vascular inflammation or atherogenesis.