Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Eng Online ; 16(1): 117, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974212

RESUMEN

BACKGROUND: Nowadays, the whole world is being concerned with a major health problem, which is diabetes. A very common symptom of diabetes is the diabetic foot ulcer (DFU). The early detection of such foot complications can protect diabetic patients from any dangerous stages that develop later and may require foot amputation. This work aims at building a mobile thermal imaging system that can be used as an indicator for possible developing ulcers. METHODS: The proposed system consists of a thermal camera connected to a Samsung smart phone, which is used to acquire thermal images. This thermal imaging system has a simulated temperature gradient of more than 2.2 °C, which represents the temperature difference (in the literature) than can indicate a possible development of ulcers. The acquired images are processed and segmented using basic image processing techniques. The analysis and interpretation is conducted using two techniques: Otsu thresholding technique and Point-to-Point mean difference technique. RESULTS: The proposed system was implemented under MATLAB Mobile platform and thermal images were analyzed and interpreted. Four testing images (feet images) were used to test this procedure; one image with any temperature variation to the feet, and three images with skin temperature increased to more than 2.2 °C introduced at different locations. With the two techniques applied during the analysis and interpretation stage, the system was successful in identifying the location of the temperature increase. CONCLUSION: This work successfully implemented a mobile thermal imaging system that includes an automated method to identify possible ulcers in diabetic patients. This may give diabetic patients the ability for a frequent self-check of possible ulcers. Although this work was implemented in simulated conditions, it provides the necessary feasibility to be further developed and tested in a clinical environment.


Asunto(s)
Pie Diabético/diagnóstico por imagen , Teléfono Inteligente , Telemedicina , Termografía , Estudios de Factibilidad , Humanos , Procesamiento de Imagen Asistido por Computador
2.
Open Biomed Eng J ; 12: 16-26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30069252

RESUMEN

PURPOSE: The number of patients who are suffering from diabetes nowadays is increasing significantly. In some countries, the percentage of population who suffer from this disease can reach up to 20%. Diabetic patients have to deal with their medical conditions and any further complications that this disease may cause. One of the most common conditions is the Diabetic Foot Ulcer (DFU). The early detection of these ulcers can help and may save the life of diabetic patients. METHODS: This work proposes a mobile application for the detection of possible ulcers using a smart phone along with a mobile thermal camera (FLIR ONE). The proposed system captures thermal images of the feet from the thermal camera. The app that identifies ulcers was built using Android studio. The images were acquired to the Samsung S6 smart phone using the FLIR ONE SDK. Image processing techniques were deployed based on Open CV Library. The procedure of detecting possible ulcers was implemented based on analyzing the thermal distribution on the two feet. The developed application compares the difference between the temperature distribution on the two feet and checks if there is a Mean Temperature Difference (MTD) greater than 2.2oC (the value which indicates a possible ulcer development). RESULTS: The system was tested under simulated conditions by heating different locations of the subjects' feet to different temperature ranges; one image with temperature less than 2.2oC and another three images with temperature greater than 2.2oC. The system has successfully identified possible ulcer regions along with an image showing the location of the possible ulcers. CONCLUSIONS: This work is a very first step in developing a complete mobile thermal imaging system that can be validated clinically in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA