Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(17): 9144-9154, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629776

RESUMEN

Wastewater pollutants are a major threat to natural resources, with antibiotics and heavy metals being common water contaminants. By harnessing clean, renewable solar energy, photocatalysis facilitates the synergistic removal of heavy metals and antibiotics. In this paper, MXene was both a template and raw material, and MXene-derived oxide (TiO2) and SnIn4S8 Z-scheme composite materials were synthesized and characterized. The synergistic mode of photocatalytic reduction and oxidation leads to the enhanced utilization of e-/h+ pairs. The TiO2/SnIn4S8 exhibited a higher photocatalytic capacity for the simultaneous removal of tetracycline (TC) (20 mg·L-1) and Cr(VI) (15 mg·L-1). The main active substances of TC degradation and Cr(VI) reduction were identified via free radical scavengers and electron paramagnetic resonance (EPR). Additionally, the potential photocatalytic degradation route of TC was thoroughly elucidated through liquid chromatography-mass spectrometry (LC-MS).

2.
J Phys Condens Matter ; 34(50)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36261047

RESUMEN

Recently, we put forward a direct integral approach to solve the partition function with ultrahigh efficiency and precision, which enables the rigorous ensemble theory to investigate phase behaviors of realistic condensed matters and has been successfully applied to the phase transition of vanadium metal (Ninget al2022J. Phys.: Condens. Matter34425404). In this work, the approach is applied to the structural phase transitions of zirconium metal under compressions up to 160 GPa and ultrahigh calculation precision is achieved. For the obtained equation of state with pressure over 40 GPa, the deviations from latest experiments are within0.7%and the computed transition pressure ofα→ωis 6.93 GPa, which is about five times larger than previous theoretical predictions and in excellent agreement with the measured range of 5-15 GPa. Our results support the argument that there is no existence of the isostructural phase transition of Zr metal that was asserted by recent experimental observations.

3.
J Phys Condens Matter ; 34(42)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35952664

RESUMEN

For realistic crystals, the free energy strictly formulated in ensemble theory can hardly be obtained because of the difficulty in solving the high-dimension integral of the partition function, the dilemma of which makes it even a doubt if the rigorous ensemble theory is applicable to phase transitions of condensed matters. In the present work, the partition function of crystal vanadium under compression up to 320 GPa at room temperature is solved by an approach developed very recently, and the derived equation of state is in a good agreement with all the experimental measurements, especially the latest one covering the widest pressure range up to 300 GPa. Furthermore, the derived Gibbs free energy proves the very argument to understand most of the experiments reported in the past decade on the pressure-induced phase transition, and, especially, a novel phase transition sequence concerning three different phases observed very recently and the measured angles of two phases agree with our theoretical results excellently.

4.
Animals (Basel) ; 12(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36496929

RESUMEN

In recent years, ensuring food security has been an important challenge for the world. It is important to make good use of China's domestic local feed resources to provide safe, stable, efficient, and high-quality rabbit meat products for China and the world. Lysine and methionine are the two most limiting essential amino acids in the rabbit diet. However, little is known about the rational composition of lysine and methionine in rabbit diets and the mechanisms that affect growth and development. Accordingly, in this study, we sought to address this knowledge gap by examining the effects of different compositions of lysine and methionine in rabbit diets. Subsequently, the growth status, nitrogen metabolism, blood biochemical indexes, muscle development, muscle quality, and the growth of satellite cells were evaluated in the animals. The results showed that diets containing 0.80% Lys and 0.40% Met improved average daily weight gain, feed conversion, nitrogen use efficiency, and muscle quality in the rabbits (p < 0.05). Additionally, it altered the amino acid transport potential in muscle by upregulating the expression of the SLC7A10 gene (p < 0.05). Meanwhile, the cell viability and the rate of division and migration of SCs in the 0.80% Lys/0.40 % Met composition group were increased (p < 0.05). SLC38A2 and P−mTOR protein expression was upregulated in the 0.80% lysine/0.40% methionine composition group (p < 0.05). In conclusion, 0.80% Lys/0.40% Met was the most suitable lysine and methionine composition in all tested diets. SLC38A2 acted as an amino acid sensor upstream of mTOR and was involved in the 0.80% Lys/0.40% Met regulation of muscle growth and development, thus implicating the mTOR signaling pathway in these processes.

5.
J Phys Condens Matter ; 33(11): 115901, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33316795

RESUMEN

The key problem of statistical physics standing over one hundred years is how to exactly calculate the partition function (or free energy), which severely hinders the theory to be applied to predict the thermodynamic properties of condensed matters. Very recently, we developed a direct integral approach (DIA) to the solutions and achieved ultrahigh computational efficiency and precision. In the present work, the background and the limitations of DIA were examined in details, and another method with the same efficiency was established to overcome the shortage of DIA for condensed system with lower density. The two methods were demonstrated with empirical potentials for solid and liquid cooper, solid argon and C60 molecules by comparing the derived internal energy or pressure with the results of vast molecular dynamics simulations, showing that the precision is about ten times higher than previous methods in a temperature range up to melting point. The ultrahigh efficiency enables the two methods to be performed with ab initio calculations and the experimental equation of state of solid copper up to ∼600 GPa was well reproduced, for the first time, from the partition function via density functional theory implemented.

6.
J Phys Condens Matter ; 33(8): 085901, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33176286

RESUMEN

Previous work has shown that thermodynamics properties calculated by phonon model with quasi-harmonic approximation (QHA) may differ badly from experiment in some cases. The inaccuracy was examined in the present work by comparing the results of QHA for argon and copper crystal with the ones of molecular dynamics simulations, partition functions obtained by a new method or experiment. It is shown that QHA works well for the systems of atomic volume smaller than 22 Å3/atom and the accuracy gets lower and lower gradually with increasing of the atomic volume. Based on this fact, the disagreement (or agreement) between the thermodynamics properties of MgO, Si, CaO, ZrO2 calculated in previous work by QHA and the experiments can be well understood.

7.
Nanomaterials (Basel) ; 9(7)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284375

RESUMEN

Deposition of atoms or molecules on a solid surface is a flexible way to prepare various novel two-dimensional materials if the growth conditions, such as suitable surface and optimum temperature, could be predicted theoretically. However, prediction challenges modern theory of material design because the free energy criteria can hardly be applied to this issue due to the long-standing problem in statistical physics of the calculations of the free energy. Herein, we present an approach to the problem by the demonstrations of graphene and γ-graphyne on the surface of copper crystal, as well as silicene on a silver substrate. Compared with previous state-of-the-art algorithms for calculations of the free energy, our approach is capable of achieving computational precisions at least 10-times higher, which was confirmed by molecular dynamics simulations, and working at least four orders of magnitude faster, which enables us to obtain free energy based on ab initio calculations of the interaction potential instead of the empirical one. The approach was applied to predict the optimum conditions for silicene growth on different surfaces of solid silver based on density functional theory, and the results are in good agreement with previous experimental observations.

8.
Sci Rep ; 5: 10513, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26012369

RESUMEN

We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing.

9.
Nanoscale Res Lett ; 9(1): 235, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24899871

RESUMEN

In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA