Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903237

RESUMEN

Precise spatiotemporal control of gene expression in the developing brain is critical for neural circuit formation, and comprehensive expression mapping in the developing primate brain is crucial to understand brain function in health and disease. Here, we developed an unbiased, automated, large-scale, cellular-resolution in situ hybridization (ISH)-based gene expression profiling system (GePS) and companion analysis to reveal gene expression patterns in the neonatal New World marmoset cortex, thalamus, and striatum that are distinct from those in mice. Gene-ontology analysis of marmoset-specific genes revealed associations with catalytic activity in the visual cortex and neuropsychiatric disorders in the thalamus. Cortically expressed genes with clear area boundaries were used in a three-dimensional cortical surface mapping algorithm to delineate higher-order cortical areas not evident in two-dimensional ISH data. GePS provides a powerful platform to elucidate the molecular mechanisms underlying primate neurobiology and developmental psychiatric and neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Callithrix/genética , Transcriptoma/genética , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Callithrix/crecimiento & desarrollo , Cuerpo Estriado/crecimiento & desarrollo , Cuerpo Estriado/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Hibridación in Situ , Ratones , Especificidad de la Especie , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo
2.
Neurochem Res ; 36(7): 1241-52, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21243430

RESUMEN

The cerebellar cortical circuit of mammals develops via a series of magnificent cellular events in the postnatal stage of development to accomplish the formation of functional circuit architectures. The contribution of genetic factors is thought to be crucial to cerebellar development. Therefore, it is essential to analyze the underlying transcriptome during development to understand the genetic blueprint of the cerebellar cortical circuit. In this review, we introduce the profiling of large numbers of spatiotemporal gene expression data obtained by developmental time-series microarray analyses and in situ hybridization cellular mRNA mapping, and the creation of a neuroinformatics database called the Cerebellar Development Transcriptome Database. Using this database, we have identified thousands of genes that are classified into various functional categories and are expressed coincidently with related cellular developmental stages. We have also suggested the molecular mechanisms of cerebellar development by functional characterization of several identified genes (Cupidin, p130Cas, very-KIND, CAPS2) responsible for distinct cellular events of developing cerebellar granule cells. Taken together, the gene expression profiling during the cerebellar development demonstrates that the development of cerebellar cortical circuit is attributed to the complex but orchestrated transcriptome.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/fisiología , Proteínas Portadoras/genética , Clonación Molecular , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/fisiología , Bases de Datos Genéticas , Exonucleasas , Perfilación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Proteínas de Andamiaje Homer , Glicoproteínas de Membrana/fisiología , Ratones , Proteínas de la Mielina/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Tirosina Quinasas/fisiología , Células de Purkinje/fisiología , Sinapsis/genética , Factores de Transcripción/genética
3.
Neural Netw ; 21(8): 1056-69, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18603407

RESUMEN

A large amount of genetic information is devoted to brain development and functioning. The neural circuit of the mouse cerebellum develops through a series of cellular and morphological events (including neuronal proliferation and migration, axogenesis, dendritogenesis, synaptogenesis and myelination) all within three weeks of birth. All of these events are controlled by specific gene groups, whose temporal and spatial expression profiles must be encoded in the genome. To understand the genetic basis underlying cerebellar circuit development, we analyzed gene expression (transcriptome) during the developmental stages on a genome-wide basis. Spatio-temporal gene expression data were collected using in situ hybridization for spatial (cellular and regional) resolution and fluorescence differential display, GeneChip, microarray and RT-PCR for temporal (developmental time series) resolution, and were annotated using Gene Ontology (controlled terminology for genes and gene products) and anatomical context (cerebellar cell types and circuit structures). The annotated experimental data were integrated into a knowledge resource database, the Cerebellar Development Transcriptome Database (CDT-DB http://www.cdtdb.brain.riken.jp), with seamless links to the relevant information at various bioinformatics database websites. The CDT-DB not only provides a unique informatics tool for mining both spatial and temporal pattern information on gene expression in developing mouse brains, but also opens up opportunities to elucidate the transcriptome for cerebellar development.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/fisiología , Almacenamiento y Recuperación de la Información , Animales , Animales Recién Nacidos , Cerebelo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
4.
Neurosci Res ; 128: 1-13, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29111135

RESUMEN

Interest in the common marmoset (Callithrix jacchus) as a primate model animal has grown recently, in part due to the successful demonstration of transgenic marmosets. However, there is some debate as to the suitability of marmosets, compared to more widely used animal models, such as the macaque monkey and mouse. Especially, the usage of marmoset for animal models of human cognition and mental disorders, is still yet to be fully explored. To examine the prospects of the marmoset model for neuroscience research, the Marmoset Gene Atlas (https://gene-atlas.bminds.brain.riken.jp/) provides a whole brain gene expression atlas in the common marmoset. We employ in situ hybridization (ISH) to systematically analyze gene expression in neonate marmoset brains, which allows us to compare expression with other model animals such as mouse. We anticipate that these data will provide sufficient information to develop tools that enable us to reveal marmoset brain structure, function, cellular and molecular organization for primate brain research.


Asunto(s)
Encéfalo/metabolismo , Callithrix/genética , Cognición/efectos de los fármacos , Expresión Génica , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Macaca
5.
PLoS One ; 5(11): e13932, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085684

RESUMEN

BACKGROUND: Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)(4)-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4. METHODOLOGY/PRINCIPAL FINDINGS: PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity. CONCLUSIONS/SIGNIFICANCE: Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Microglía/enzimología , Fosfolipasa D/metabolismo , Bazo/enzimología , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Células COS , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Exonucleasas , Regulación Enzimológica de la Expresión Génica , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Inmunohistoquímica , Hibridación in Situ , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microglía/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfolipasa D/genética , Homología de Secuencia de Aminoácido , Bazo/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA