Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Dev Biol ; 496: 52-62, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717049

RESUMEN

Ambulacrarians (echinoderms and hemichordates) are a sister group to chordates; thus, their larval cell-types may provide clues about evolution of chordate body plans. Although most genic information accumulated to date pertains to sea urchin embryogenesis, starfish embryogenesis represents a more ancestral mode than that of sea urchins. We performed single-cell RNA-seq analysis of cell-types from gastrulae and bipinnarial larvae of the starfish, Patiria pectinifera, and categorized them into 22 clusters, each of which is composed of cells with specific, shared profiles of development-relevant gene expression. Oral and aboral ectoderm, apical plate, hindgut or archenteron, midgut or intestine, pharynx, endomesoderm, stomodeum, and mesenchyme of the gastrulae, and neurons, ciliary bands, enterocoel and muscle of larvae were characterized by expression profiles of at least two relevant transcription factor genes and signaling molecular genes. Expression of Hox2, Hox7, Hox9/10, and Hox11/13b was detected in cells of clusters that form the larval enterocoel. By comparing homologous gene expression profiles in chordate embryos, we discuss and propose how the chordate body plan evolved from a deuterostome ancestor, from which the echinoderm body plan also evolved.


Asunto(s)
Cordados , Animales , Cordados/genética , Estrellas de Mar/genética , Larva/genética , Análisis de Expresión Génica de una Sola Célula , Erizos de Mar/genética
2.
Dev Biol ; 483: 128-142, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038441

RESUMEN

Brachyury is a T-box family transcription factor and plays pivotal roles in morphogenesis. In sea urchin embryos, Brachyury is expressed in the invaginating endoderm, and in the oral ectoderm of the invaginating mouth opening. The oral ectoderm is hypothesized to serve as a signaling center for oral (ventral)-aboral (dorsal) axis formation and to function as a ventral organizer. Our previous results of a single-cell RNA-seq (scRNA-seq) atlas of early Strongylocentrotus purpuratus embryos categorized the constituent cells into 22 clusters, in which the endoderm consists of three clusters and the oral ectoderm four clusters (Foster et al., 2020). Here we examined which clusters of cells expressed Brachyury in relation to the morphogenesis and the identity of the ventral organizer. Our results showed that cells of all three endoderm clusters expressed Brachyury in blastulae. Based on expression profiles of genes involved in the gene regulatory networks (GRNs) of sea urchin embryos, the three clusters are distinguishable, two likely derived from the Veg2 tier and one from the Veg1 tier. On the other hand, of the four oral-ectoderm clusters, cells of two clusters expressed Brachyury at the gastrula stage and genes that are responsible for the ventral organizer at the late blastula stage, but the other two clusters did not. At a single-cell level, most cells of the two oral-ectoderm clusters expressed organizer-related genes, nearly a half of which coincidently expressed Brachyury. This suggests that the ventral organizer contains Brachyury-positive cells which invaginate to form the stomodeum. This scRNA-seq study therefore highlights significant roles of Brachyury-expressing cells in body-plan formation of early sea urchin embryos, though cellular and molecular mechanisms for how Brachyury functions in these processes remain to be elucidated in future studies.


Asunto(s)
Ectodermo/citología , Ectodermo/metabolismo , Desarrollo Embrionario/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , RNA-Seq/métodos , Erizos de Mar/embriología , Erizos de Mar/genética , Análisis de la Célula Individual/métodos , Proteínas de Dominio T Box/metabolismo , Animales , Blástula/metabolismo , Ectodermo/embriología , Endodermo/embriología , Endodermo/metabolismo , Gástrula/metabolismo , Redes Reguladoras de Genes , Transducción de Señal/genética
3.
Proc Biol Sci ; 290(1995): 20230026, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987647

RESUMEN

Coral reefs have the highest biodiversity of all marine ecosystems in tropical and subtropical oceans. However, scleractinian corals, keystone organisms of reef productivity, are facing a crisis due to climate change and anthropogenic activities. A broad survey of reef-building corals is essential for worldwide reef preservation. To this end, direct observations made by coral-specialist divers might be supported by another robust method. We improved a recently devised environmental DNA (eDNA) metabarcoding method to identify more than 43 scleractinian genera by sampling 2 l of surface seawater above reefs. Together with direct observations by divers, we assessed the utility of eDNA at 63 locations spanning approximately 250 km near Okinawa Island. Slopes of these islands are populated by diverse coral genera, whereas shallow 'moats' sustain fewer and less varied coral taxa. Major genera recorded by divers included Acropora, Pocillopora, Porites and Montipora, the presence of which was confirmed by eDNA analyses. In addition, eDNA identified more genera than direct observations and documented the presence of previously unrecorded species. This scleractinian coral-specific eDNA method promises to be a powerful tool to survey coral reefs broadly, deeply and robustly.


Asunto(s)
Antozoos , ADN Ambiental , Animales , Antozoos/genética , Ecosistema , Código de Barras del ADN Taxonómico , Arrecifes de Coral
4.
Dev Growth Differ ; 65(8): 470-480, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37483093

RESUMEN

Most metazoans have a single copy of the T-box transcription factor gene Brachyury. This gene is expressed in cells of the blastopore of late blastulae and the archenteron invagination region of gastrulae. It appears to be crucial for gastrulation and mesoderm differentiation of embryos. Although this expression pattern is shared by most deuterostomes, Brachyury expression has not been reported in adult stages. Here we show that Brachyury of an indirect developer, the hemichordate acorn worm Ptychodera flava, is expressed not only in embryonic cells, but also in cells of the caudal tip (anus) region of adults. This spatially restricted expression, shown by whole-mount in situ hybridization, was confirmed by Iso-Seq RNA sequencing and single-cell RNA-seq (scRNA-seq) analysis. Iso-Seq analysis showed that gene expression occurs only in the caudal region of adults, but not in anterior regions, including the stomochord. scRNA-seq analysis showed a cluster that contained Brachyury-expressing cells comprising epidermis- and mesoderm-related cells, but which is unlikely to be associated with the nervous system or muscle. Although further investigation is required to examine the roles of Brachyury in adults, this study provides important clues for extending studies on Brachyury expression involved in development of the most posterior region of deuterostomes.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Proteínas Fetales/genética , Proteínas de Dominio T Box/genética , Regulación del Desarrollo de la Expresión Génica
5.
Zoolog Sci ; 40(6): 444-454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064371

RESUMEN

Coral-dinoflagellate symbiosis is a unique biological phenomenon, in which animal cells engulf single-celled photosynthetic algae and maintain them in their cytoplasm mutualistically. Studies are needed to reveal the complex mechanisms involved in symbiotic processes, but it is difficult to answer these questions using intact corals. To tackle these issues, our previous studies established an in vitro system of symbiosis between cells of the scleractinian coral Acropora tenuis and the dinoflagellate Breviolum minutum, and showed that corals direct phagocytosis, while algae are likely engulfed by coral cells passively. Several genera of the family Symbiodiniaceae can establish symbioses with corals, but the symbiotic ratio differs depending on the dinoflagellate clades involved. To understand possible causes of these differences, this study examined whether cultured coral cells show phagocytotic activity with various dinoflagellate strains similar to those shown by intact A. tenuis. We found that (a) A. tenuis larvae incorporate Symbiodinium and Breviolum, but not Cladocopium, and very few Effrenium, (b) cultured coral cells engulfed all four species but the ratio of engulfment was significantly higher with Symbiodinium and Breviolum than Cladocopium and Effrenium, (c) cultured coral cells also phagocytosed inorganic latex beads differently than they do dinoflagellates . It is likely that cultured coral cells preferentially phagocytose Symbiodinium and Breviolum, suggesting that specific molecular mechanisms involved in initiation of symbiosis should be investigated in the future.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Fagocitosis , Simbiosis , Larva
6.
BMC Biol ; 18(1): 139, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33050904

RESUMEN

BACKGROUND: Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS: We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS: Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.


Asunto(s)
Dinoflagelados/metabolismo , Genoma de Protozoos , MicroARNs/análisis , Isoformas de ARN/análisis , ARN Protozoario/análisis , Metabolismo Secundario , Dinoflagelados/genética , ARN de Algas/análisis
7.
BMC Genomics ; 21(1): 422, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586267

RESUMEN

BACKGROUND: The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is one of the most important edible seaweeds, and it is cultivated for market primarily in Okinawa, Japan. Four strains, denominated S, K, O, and C, with distinctively different morphologies, have been cultivated commercially since the early 2000s. We previously reported a draft genome of the S-strain. To facilitate studies of seaweed biology for future aquaculture, we here decoded and analyzed genomes of the other three strains (K, O, and C). RESULTS: Here we improved the genome of the S-strain (ver. 2, 130 Mbp, 12,999 genes), and decoded the K-strain (135 Mbp, 12,511 genes), the O-strain (140 Mbp, 12,548 genes), and the C-strain (143 Mbp, 12,182 genes). Molecular phylogenies, using mitochondrial and nuclear genes, showed that the S-strain diverged first, followed by the K-strain, and most recently the C- and O-strains. Comparisons of genome architecture among the four strains document the frequent occurrence of inversions. In addition to gene acquisitions and losses, the S-, K-, O-, and C-strains possess 457, 344, 367, and 262 gene families unique to each strain, respectively. Comprehensive Blast searches showed that most genes have no sequence similarity to any entries in the non-redundant protein sequence database, although GO annotation suggested that they likely function in relation to molecular and biological processes and cellular components. CONCLUSIONS: Our study compares the genomes of four strains of C. okamuranus and examines their phylogenetic relationships. Due to global environmental changes, including temperature increases, acidification, and pollution, brown algal aquaculture is facing critical challenges. Genomic and phylogenetic information reported by the present research provides useful tools for isolation of novel strains.


Asunto(s)
Genómica/métodos , Phaeophyceae/clasificación , Algas Marinas/genética , Acuicultura , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas Mitocondriales/genética , Phaeophyceae/genética , Filogenia , Algas Marinas/clasificación
9.
Genome Res ; 26(1): 140-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26668163

RESUMEN

The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.


Asunto(s)
Ciona intestinalis/genética , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción , Animales , Drosophila/genética , Regulación de la Expresión Génica , Humanos , Familia de Multigenes , Trans-Empalme
10.
Dev Growth Differ ; 61(9): 475-484, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31709526

RESUMEN

The green alga, Caulerpa lentillifera, is composed of a single cell with multiple nuclei, but it possesses structures analogous to leaves or fronds, stems or stolons, and roots or rhizoids. To understand molecular mechanisms involved in formation and function of these structures, we carried out RNA-seq analysis of fronds and stolons (including rhizoids). Taking advantage of the decoded genome of C. lentillifera, the present RNA-seq analysis addressed transcripts corresponding to 9,311 genes identified in the genome. RNA-seq data suggested that 8,734 genes are expressed in sporophytes. Despite the siphonous body of the alga, differential gene expression was evident in the two structures. 1,027 (11.8%) and 1,129 (12.9%) genes were preferentially expressed in fronds and stolons, respectively, while the remaining 6,578 (75.3%) genes were expressed at the same level in both. Most genes preferentially expressed in fronds are associated with photosynthesis and plant hormone pathways, including abscisic acid signaling. In contrast, those preferentially expressed in stolons are associated with translation and DNA replication. These results indicate that gene expression is regulated differently between fronds and stolons, which probably governs the function of each structure. Together with genomic information, the present transcriptomic data provide genic information about development and physiology of this unique, siphonous organism.


Asunto(s)
Caulerpa/genética , Regulación de la Expresión Génica de las Plantas/genética , Estructuras de las Plantas/genética , Caulerpa/crecimiento & desarrollo
11.
BMC Genomics ; 19(1): 733, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290758

RESUMEN

BACKGROUND: The striped catfish, Pangasianodon hypophthalmus, is a freshwater and benthopelagic fish common in the Mekong River delta. Catfish constitute a valuable source of dietary protein. Therefore, they are cultured worldwide, and P. hypophthalmus is a food staple in the Mekong area. However, genetic information about the culture stock, is unavailable for breeding improvement, although genetics of the channel catfish, Ictalurus punctatus, has been reported. To acquire genome sequence data as a useful resource for marker-assisted breeding, we decoded a draft genome of P. hypophthalmus and performed comparative analyses. RESULTS: Using the Illumina platform, we obtained both nuclear and mitochondrial DNA sequences. Molecular phylogeny using the mitochondrial genome confirmed that P. hypophthalmus is a member of the family Pangasiidae and is nested within a clade including the families Cranoglanididae and Ictaluridae. The nuclear genome was estimated at approximately 700 Mb, assembled into 568 scaffolds with an N50 of 14.29 Mbp, and was estimated to contain ~ 28,600 protein-coding genes, comparable to those of channel catfish and zebrafish. Interestingly, zebrafish produce gadusol, but genes for biosynthesis of this sunscreen compound have been lost from catfish genomes. The differences in gene contents between these two catfishes were found in genes for vitamin D-binding protein and cytosolic phospholipase A2, which have lost only in channel catfish. The Hox cluster in catfish genomes comprised seven paralogous groups, similar to that of zebrafish, and comparative analysis clarified catfish lineage-specific losses of A5a, B10a, and A11a. Genes for insulin-like growth factor (IGF) signaling were conserved between the two catfish genomes. In addition to identification of MHC class I and sex determination-related gene loci, the hypothetical chromosomes by comparison with the channel catfish demonstrated the usefulness of the striped catfish genome as a marker resource. CONCLUSIONS: We developed genomic resources for the striped catfish. Possible conservation of genes for development and marker candidates were confirmed by comparing the assembled genome to that of a model fish, Danio rerio, and to channel catfish. Since the catfish genomic constituent resembles that of zebrafish, it is likely that zebrafish data for gene functions is applicable to striped catfish as well.


Asunto(s)
Acuicultura , Bagres/crecimiento & desarrollo , Bagres/genética , Genómica , Animales , Anotación de Secuencia Molecular , Procesos de Determinación del Sexo/genética
12.
Dev Biol ; 420(1): 178-185, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789227

RESUMEN

The Ciona intestinalis larva has two distinct photoreceptor organs, a conventional pigmented ocellus and a nonpigmented ocellus, that are asymmetrically situated in the brain. The ciliary photoreceptor cells of these ocelli resemble visual cells of the vertebrate retina. Precise elucidation of the lineage of the photoreceptor cells will be key to understanding the developmental mechanisms of these cells as well as the evolutionary relationships between the photoreceptor organs of ascidians and vertebrates. Photoreceptor cells of the pigmented ocellus have been thought to develop from anterior animal (a-lineage) blastomeres, whereas the developmental origin of the nonpigmented ocellus has not been determined. Here, we show that the photoreceptor cells of both ocelli develop from the right anterior vegetal hemisphere: those of the pigmented ocellus from the right A9.14 cell and those of the nonpigmented ocellus from the right A9.16 cell. The pigmented ocellus is formed by a combination of two lineages of cells with distinct embryonic origins: the photoreceptor cells originate from a medial portion of the A-lineage neural plate, while the pigment cell originates from the lateral edge of the a-lineage neural plate. In light of the recently proposed close evolutionary relationship between the ocellus pigment cell of ascidians and the cephalic neural crest of vertebrates, the ascidian ocellus may represent a prototypic contribution of the neural crest to a cranial sensory organ.


Asunto(s)
Linaje de la Célula , Ciona intestinalis/citología , Cresta Neural/citología , Tubo Neural/citología , Células Fotorreceptoras de Invertebrados/citología , Órganos de los Sentidos/citología , Animales , Recuento de Células , Ciona intestinalis/metabolismo , Larva/citología , Imagen Óptica , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentación , Epitelio Pigmentado de la Retina/citología
13.
R Soc Open Sci ; 11(2): 221586, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38371658

RESUMEN

Mesophotic coral ecosystems (MCEs) are light-dependent tropical or subtropical communities occurring at depths of 30-150 m. Broader surveys of MCEs are needed to better understand stony corals, the keystone species of coral-reef ecosystems. While MCEs have been studied by professional SCUBA divers and with deep-sea robots, comprehensive surveys of MCEs are required. An eDNA metabarcoding method has recently been used to survey scleractinian corals in shallow reefs. We tested whether MCEs might be more comprehensively surveyed by collecting seawater samples using an underwater mini-remote operated vehicle (mini-ROV). Seawater was collected 1-2 m above reef tops at depths of 20-80 m at 24 sites in six locations around the Zamami Islands (Okinawa, Japan). Water samples were then subjected to coral-specific eDNA amplification. Metabarcoding analyses of amplicons showed that except for one site, coral-specific eDNA from approximately 0.5 l seawater samples was sufficient to identify genera. The proportion of Acropora eDNA was higher at shallow reefs and upper ridges of slopes, while the proportion of Porites increased at mesophotic sites. Although further technical improvements are required, this study suggests that it may be possible to monitor mesophotic corals to the generic level using eDNA collected using mini-ROVs.

14.
Dev Growth Differ ; 54(2): 177-86, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22470937

RESUMEN

The tunicate Ciona intestinalis larva has a simple central nervous system (CNS), consisting of fewer than 400 cells, which is homologous to the vertebrate CNS. Recent studies have revealed neuronal types and networks in the larval CNS of C. intestinalis, yet their cell lineage and the molecular mechanism by which particular types of neurons are specified and differentiate remain poorly understood. Here, we report cell lineage origin and a cis-regulatory module for the anterior caudal inhibitory neurons (ACINs), a putative component of the central pattern generator regulating swimming locomotion. The vesicular GABA/ glycine transporter gene Ci-VGAT, a specific marker for GABAergic / glycinergic neurons, is expressed in distinct sets of neurons, including ACINs of the tail nerve cord and others in the brain vesicle and motor ganglion. Comparative genomics analysis between C. intestinalis and Ciona savignyi and functional analysis in vivo identified the cis-regulatory module responsible for Ci-VGAT expression in ACINs. Our cell lineage analyses inferred that ACINs derive from A11.116 cells, which have been thought to solely give rise to glial ependymal cells of the lateral wall of the nerve cord. The present findings will provide a solid basis for future studies addressing the molecular mechanism underlying specification of ACINs, which play a critical role in controlling larval locomotion


Asunto(s)
Sistema Nervioso Central/citología , Ciona intestinalis/citología , Ciona intestinalis/metabolismo , Neuronas GABAérgicas/metabolismo , Larva/citología , Larva/metabolismo , Neuronas/metabolismo , Animales , Linaje de la Célula , Ciona intestinalis/genética , Electroporación , Genómica , Larva/genética
15.
BMC Genomics ; 12 Suppl 3: S7, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22369359

RESUMEN

BACKGROUND: CpG islands are observed in mammals and other vertebrates, generally escape DNA methylation, and tend to occur in the promoters of widely expressed genes. Another class of promoter has lower G+C and CpG contents, and is thought to be involved in the spatiotemporal regulation of gene expression. Non-vertebrate deuterostomes are reported to have a single class of promoter with high-frequency CpG dinucleotides, suggesting that this is the original type of promoter. However, the limited annotation of these genes has impeded the large-scale analysis of their promoters. RESULTS: To determine the origins of the two classes of vertebrate promoters, we chose Ciona intestinalis, an invertebrate that is evolutionarily close to the vertebrates, and identified its transcription start sites genome-wide using a next-generation sequencer. We indeed observed a high CpG content around the transcription start sites, but their levels in the promoters and background sequences differed much less than in mammals. The CpG-rich stretches were also fairly restricted, so they appeared more similar to mammalian CpG-poor promoters. CONCLUSIONS: From these data, we infer that CpG islands are not sufficiently ancient to be found in invertebrates. They probably appeared early in vertebrate evolution via some active mechanism and have since been maintained as part of vertebrate promoters.


Asunto(s)
Regiones Promotoras Genéticas , Urocordados/genética , Vertebrados/genética , Animales , Evolución Biológica , Islas de CpG , Frecuencia de los Genes , Sitio de Iniciación de la Transcripción
16.
Mar Biotechnol (NY) ; 23(3): 373-388, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33899125

RESUMEN

Planula larvae of the scleractinian coral, Acropora tenuis, consist of elongated ectodermal cells and developing inner endodermal cells. To establish in vitro cell lines for future studies of cellular and developmental potential of coral cells, larvae were successfully dissociated into single cells by treating them with a tissue dissociation solution consisting of trypsin, EDTA, and collagenase. Brown-colored cells, translucent cells, and pale blue cells were the major components of dissociated larvae. Brown-colored cells began to proliferate transiently in the culture medium that was devised for the coral, while translucent cells and pale blue cells decreased in number about 1 week after cell dissociation. In addition, when a modular protease, plasmin, was added to the cell culture medium, brown-colored cells extended pseudopodia and assumed amorphous shapes. They then continued to proliferate in clumps for more than 6 months with a doubling time of approximately 4-5 days. From 3 weeks of cell culture onward, brown-colored cells often aggregated and exhibited morphogenesis-like behavior to form flat sheets, and blastula-like clusters or gastrula-like spheres. Single cells or cell-clusters of the cell lines were analyzed by RNA-seq. This analysis showed that genes expressed in these cells in vitro were A. tenuis genes. Furthermore, each cell line expressed a specific set of genes, suggesting that their properties include gastroderm, secretory cells, undifferentiated cells, neuronal cells, and epidermis. All cell properties were maintained stably throughout successive cell cultures. These results confirm the successful establishment of a coral in vitro cell line.


Asunto(s)
Antozoos/citología , Antozoos/crecimiento & desarrollo , Técnicas de Cultivo de Célula/métodos , Animales , Antozoos/genética , Antozoos/metabolismo , Línea Celular , Larva/citología , Larva/genética , Análisis de Secuencia de ARN , Transcriptoma
17.
Cell Mol Bioeng ; 14(4): 309-320, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34295442

RESUMEN

INTRODUCTION: Metastasis is a process in which cancer cells spread from the primary focus site to various other organ sites. Many studies have suggested that reduced stiffness would facilitate passing through extracellular matrix when cancer cells instigate a metastatic process. Here we investigated the compressive properties of melanoma cancer cells with different metastatic potentials at the whole-cell level. Differences in their compressive properties were analyzed by examining actin filament structure and actin-related gene expression. METHODS: Compressive tests were carried out for two metastatic B16 melanoma variants (B16-F1 and B16-F10) to characterize global compressive properties of cancer cells. RNA-seq analysis and fluorescence microscopic imaging were performed to clarify contribution of actin filaments to the global compressive properties. RESULTS: RNA-seq analysis and fluorescence microscopic imaging revealed the undeveloped structure of actin filaments in B16-F10 cells. The Young's modulus of B16-F10 cells was significantly lower than that of B16-F1 cells. Disruption of the actin filaments in B16-F1 cells reduced the Young's modulus to the same level as that of B16-F10 cells, while the Young's modulus in B16-F10 cells remained the same regardless of the disruption. CONCLUSIONS: In B16 melanoma cancer cell lines, cells with higher metastatic potential were more deformable at the whole-cell level with undeveloped actin filament structure, even when highly deformed. These results imply that invasive cancer cells may gain the ability to inhibit actin filament development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s12195-021-00677-w).

18.
Front Cell Dev Biol ; 9: 696875, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336847

RESUMEN

Among chordate taxa, the cephalochordates diverged earlier than urochordates and vertebrates; thus, they retain unique, primitive developmental features. In particular, the amphioxus notochord has muscle-like properties, a feature not seen in urochordates or vertebrates. Amphioxus contains two Brachyury genes, Bra1 and Bra2. Bra2 is reportedly expressed in the blastopore, notochord, somites, and tail bud, in contrast to a low level of Bra1 expression only in notochord. To distinguish the expression profiles of the two Brachyury genes at the single-cell level, we carried out single-cell RNA-seq (scRNA-seq) analysis using the amphioxus, Branchiostoma japonicum. This scRNA-seq analysis classified B. japonicum embryonic cells into 15 clusters at developmental stages from midgastrula to early swimming larva. Brachyury was expressed in cells of clusters 4, 5, 8, and 9. We first confirmed that cluster 8 comprises cells that form somites since this cluster specifically expresses four myogenic factor genes. Cluster 9 contains a larger number of cells with high levels of Bra2 expression and a smaller number of cells with Bra1 expression. Simultaneous expression in cluster 9 of tool-kit genes, including FoxA, Goosecoid, and hedgehog, showed that this cluster comprises cells that form the notochord. Expression of Bra2, but not Bra1, in cells of clusters 4 and 5 at the gastrula stage together with expression of Wnt1 and Caudal indicates that clusters 4 and 5 comprise cells of the blastopore, which contiguously form the tail bud. In addition, Hox1, Hox3, and Hox4 were highly expressed in Bra2-expressing clusters 4, 5, 8, and 9 in a temporally coordinated manner, suggesting roles of anterior Hox genes in specification of mesodermal organs, including somites, notochord, and tail bud. This scRNA-seq analysis therefore highlights differences between the two Brachyury genes in relation to embryonic regions in which they are expressed and their levels of expression. Bra2 is the ancestral Brachyury in amphioxus, since expression in the blastopore is shared with other deuterostomes. On the other hand, Bra1 is a duplicate copy and likely evolved a supplementary function in notochord and somite formation in the Branchiostoma lineage.

19.
Brief Funct Genomics ; 20(3): 148-161, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33907795

RESUMEN

Targeted 'omics' research for seaweeds, utilizing various computational and informatics frameworks, has the potential to rapidly develop our understanding of biological processes at the molecular level and contribute to solutions for the most pressing environmental and social issues of our time. Here, a systematic review into the current status of seaweed omics research was undertaken to evaluate the biological diversity of seaweed species investigated (red, green and brown phyla), the levels to which the work was undertaken (from full genome to transcripts, proteins or metabolites) and the field of research to which it has contributed. We report that from 1994 to 2021 the majority of seaweed omics research has been performed on the red seaweeds (45% of total studies), with more than half of these studies based upon two genera Pyropia and Gracilaria. A smaller number of studies examined brown seaweed (key genera Saccharina and Sargassum) and green seaweed (primarily Ulva). Overall, seaweed omics research is most highly associated with the field of evolution (46% of total studies), followed by the fields of ecology, natural products and their biosynthesis, omics methodology and seaweed-microbe interactions. Synthesis and specific outcomes derived from omics studies in the red seaweeds are provided. Together, these studies have provided a broad-scale interrogation of seaweeds, facilitating our ability to answer fundamental queries and develop applied outcomes. Crucial to the next steps will be establishing analytical tools and databases that can be more broadly utilized by practitioners and researchers across the globe because of their shared interest in the key seaweed genera.


Asunto(s)
Algas Marinas , Biodiversidad
20.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34515781

RESUMEN

The kuruma shrimp Marsupenaeus japonicus (order Decapoda, family Penaeidae) is an economically important crustacean that occurs in shallow, warm seas across the Indo-Pacific. Here, using a combination of Illumina and Oxford Nanopore Technologies platforms, we produced a draft genome assembly of M. japonicus (1.70 Gbp; 18,210 scaffolds; scaffold N50 = 234.9 kbp; 34.38% GC, 93.4% BUSCO completeness) and a complete mitochondrial genome sequence (15,969 bp). As with other penaeid shrimp genomes, the M. japonicus genome is extremely rich in simple repeats, which occupies 27.4% of the assembly. A total of 26,381 protein-coding gene models (94.7% BUSCO completeness) were predicted, of which 18,005 genes (68.2%) were assigned functional description by at least one method. We also produced an Illumina-based transcriptome shotgun assembly (40,991 entries; 93.0% BUSCO completeness) and a PacBio Iso-Seq transcriptome assembly (25,415 entries; 67.5% BUSCO completeness). We envision that the M. japonicus genome and transcriptome assemblies will serve as useful resources for the basic research, fisheries management, and breeding programs of M. japonicus.


Asunto(s)
Penaeidae , Animales , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Penaeidae/genética , Análisis de Secuencia de ADN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA