Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 58(31): 10655-10659, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31157489

RESUMEN

Modern supramolecular chemistry is overwhelmingly based on non-covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non-carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host-guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host-guest chemistry of the pentameric macrocycle [{P(µ-Nt Bu}2 NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO- anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV . Our study underscores the future promise of p-block macrocyclic chemistry.

2.
Chemistry ; 24(13): 3073-3082, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205953

RESUMEN

Outside the confines and well-established domain of organic chemistry, the systematic building of large macromolecular arrangements based on non-carbon elements represents a significant and exciting challenge. Our aim in the past two decades has been to develop robust synthetic methods to construct new types of main group architectures in a methodical way, principles of design that parallel those used in the organic arena. This Concept article addresses the fundamental thermodynamic and kinetic problems involved in the design and synthesis of main group macrocycles and looks to future developments of macromolecules in this area, as well as new applications in coordination chemistry.

3.
Chem Sci ; 13(18): 5398-5412, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35655560

RESUMEN

Methods for measuring enantiomeric excess (ee) of organic molecules by NMR spectroscopy provide rapid analysis using a standard technique that is readily available. Commonly this is accomplished by chiral derivatisation of the detector molecule (producing a chiral derivatisation agent, CDA), which is reacted with the mixture of enantiomers under investigation. However, these CDAs have almost exclusively been based on carbon frameworks, which are generally costly and/or difficult to prepare. In this work, a methodology based on the readily prepared inorganic cyclodiphosph(iii)azane CDA ClP(µ-N t Bu)2POBorn (Born = endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) is shown to be highly effective in the measurement of ee's of chiral amines, involving in situ reaction of the chiral amines (R*NH2) with the P-Cl bond of the CDA followed by quaternization of the phosphorus framework with methyl iodide. This results in sharp 31P NMR signals with distinct chemical shift differences between the diastereomers that are formed, which can be used to obtain the ee directly by integration. Spectroscopic, X-ray structural and DFT studies suggest that the NMR chemical shift differences between diastereomers is steric in origin, with the sharpness of these signals resulting from conformational locking of the bornyl group relative to the P2N2 ring induced by the presence of the P(v)-bonded amino group (R*NH). This study showcases cheap inorganic phosphazane CDAs as simple alternatives to organic variants for the rapid determination of ee.

4.
Front Chem ; 8: 593261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282834

RESUMEN

We report here the synthesis of a 1,3-alternate calix[4]arene 8, with bis-pyrazolylmethylpyrenes on the one end and bis-triazolylmethylphenyls on the other end, as a homoditropic fluorescent sensor for both Hg2+ and Ag+ ions. Calix[4]arene 3, with lower-rim bis-pyrazolylmethylpyrenes in cone conformation, was also synthesized as a control compound. UV-Vis and fluorescence spectra were used for metal ions screening, and we found that both ligands 8 and 3 showed strong excimer emission of pyrenes when they are as a free ligand in CHCl3/MeOH (v/v, 3:1) solution; however, they both showed a high selectivity toward Hg2+ and Ag+ ions with strong fluorescence quenching and yet with different binding ratios. The fluorescence of ligand 8 was strongly quenched by Hg2+ but was only partially quenched by Ag+ ions; however, the fluorescence of ligand 3 was strongly quenched by Hg2+, Ag+, and Cu2+ ions. Job plot experiments showed that ligand 8 formed a 1:2 complex with both Hg2+ and Ag+ ions; ligand 3 formed a 1:1 complex with Hg2+, but it formed a 2:3 complex with Ag+. The binding constant of ligand 3 with Hg2+ and Ag+ ions was determined by the Benesi-Hildebrand plot of UV-vis titration experiments to be 2.99 × 103 and 3.83 × 103 M-1, respectively, while the association constant of ligand 8 with Hg2+ and Ag+ was determined by Hill plot to be 1.46 × 1012 and 9.24 × 1011 M-2, respectively. Ligand 8 forms a strong complex with either two Hg2+ or two Ag+ ions using both the upper and lower rims of the 1,3-alternate calix[4]arene as the binding pockets; hence, it represents one of the highly selective fluorescent sensors for the homoditropic sensing of Hg2+ and Ag+ ions.

5.
Dalton Trans ; 47(19): 6675-6678, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29693678

RESUMEN

Main group inorganic macrocycles, based on p-block element backbones other than carbon, are a challenging synthetic target that has been largely overlooked. In this study, we show that a simple strategy based on the combination of electrophilic and nucleophilic phosphazane building blocks can be extended to readily accessible [E(tBuN)P(µ-NtBu)]22- nucleophilic components, as exemplified by the Se-bridge PIII/PV phosphazane macrocycle [{(tBuN[double bond, length as m-dash])PV(µ-NtBu)}2(µ-Se)2{PIII(µ-NtBu)}2]3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA