Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 55(1): 49, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594770

RESUMEN

Riemerella anatipestifer infection is characterized by meningitis with neurological symptoms in ducklings and has adversely affected the poultry industry. R. anatipestifer strains can invade the duck brain to cause meningitis and neurological symptoms, but the underlying mechanism remains unknown. In this study, we showed that obvious clinical symptoms, an increase in blood‒brain barrier (BBB) permeability, and the accumulation of inflammatory cytokines occurred after intravenous infection with the Yb2 strain but not the mutant strain Yb2ΔsspA, indicating that Yb2 infection can lead to cerebrovascular dysfunction and that the type IX secretion system (T9SS) effector SspA plays a critical role in this pathological process. In addition, we showed that Yb2 infection led to rapid degradation of occludin (a tight junction protein) and collagen IV (a basement membrane protein), which contributed to endothelial barrier disruption. The interaction between SspA and occludin was confirmed by coimmunoprecipitation. Furthermore, we found that SspA was the main enzyme mediating occludin and collagen IV degradation. These data indicate that R. anatipestifer SspA mediates occludin and collagen IV degradation, which functions in BBB disruption in R. anatipestifer-infected ducks. These findings establish the molecular mechanisms by which R. anatipestifer targets duckling endothelial cell junctions and provide new perspectives for the treatment and prevention of R. anatipestifer infection.


Asunto(s)
Infecciones por Flavobacteriaceae , Meningitis , Enfermedades de las Aves de Corral , Riemerella , Animales , Barrera Hematoencefálica/metabolismo , Patos/metabolismo , Virulencia , Factores de Virulencia/metabolismo , Ocludina/genética , Ocludina/metabolismo , Infecciones por Flavobacteriaceae/veterinaria , Riemerella/metabolismo , Meningitis/veterinaria , Colágeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
2.
J Transl Med ; 21(1): 63, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717891

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) detection following curative-intent surgery could directly reflect the presence of minimal residual disease, the ultimate cause of clinical recurrence. However, ctDNA is not postoperatively detected in ≥ 50% of patients with stage I-III colorectal cancer (CRC) who ultimately recur. Herein we sought to improve recurrence risk prediction by combining ctDNA with clinicopathological risk factors in stage I-III CRC. METHODS: Two independent cohorts, both consisting of early-stage CRC patients who underwent curative surgery, were included: (i) the discovery cohort (N = 124) with tumor tissues and postoperative plasmas for ctDNA determination; and (ii) the external validation cohort (N = 125) with available ctDNA results. In the discovery cohort, somatic variations in tumor tissues and plasmas were determined via a 733-gene and 127-gene next-generation sequencing panel, respectively. RESULTS: In the discovery cohort, 17 of 108 (15.7%) patients had detectable ctDNA. ctDNA-positive patients had a significantly high recurrence rate (76.5% vs. 16.5%, P < 0.001) and short recurrence-free survival (RFS; P < 0.001) versus ctDNA-negative patients. In addition to ctDNA status, the univariate Cox model identified pathologic stage, lymphovascular invasion, nerve invasion, and preoperative carcinoembryonic antigen level associated with RFS. We combined the ctDNA and clinicopathological risk factors (CTCP) to construct a model for recurrence prediction. A significantly higher recurrence rate (64.7% vs. 8.1%, P < 0.001) and worse RFS (P < 0.001) were seen in the high-risk patients classified by the CTCP model versus those in the low-risk patients. Receiver operating characteristic analysis demonstrated that the CTCP model outperformed ctDNA alone at recurrence prediction, which increased the sensitivity of 2 year RFS from 49.6% by ctDNA alone to 87.5%. Harrell's concordance index, calibration curve, and decision curve analysis also suggested that the CTCP model had good discrimination, consistency, and clinical utility. These results were reproduced in the validation cohort. CONCLUSION: Combining postoperative ctDNA and clinical risk may better predict recurrence than ctDNA alone for developing a personalized postoperative management strategy for CRC.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Colorrectales , Humanos , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Curva ROC , Factores de Riesgo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología
3.
Colorectal Dis ; 25(10): 2087-2092, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37612783

RESUMEN

AIM: The aim of this study was to investigate the efficacy of multiple perineal perforator flaps in repairing deep perineal defects after pelvic exenteration for locally advanced or recurrent rectal cancer. METHOD: We investigated the outcomes of eight patients whose repairs involved a novel method of using an internal pudendal artery perforator (IPAP) flap combined with an inferior gluteal artery perforator (IGAP) flap. RESULTS: There were four male and four female patients with a mean age of 56 years (36-72 years). Bilateral IPAP flaps combined with bilateral IGAP flaps were used in five patients, unilateral IPAP flaps combined with bilateral IGAP flaps were used in two patients and bilateral IPAP flaps were used in one patient. There were no functional limitations in daily activities during the 6-month follow-up period. CONCLUSION: Our study showed that using multiple perineal perforator flaps combined with lining repair is feasible for repairing deep perineal defects in patients who have undergone rectal cancer surgery that includes pelvic exenteration.


Asunto(s)
Exenteración Pélvica , Colgajo Perforante , Procedimientos de Cirugía Plástica , Neoplasias del Recto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias del Recto/cirugía , Perineo/cirugía , Colgajo Perforante/cirugía
4.
Korean J Physiol Pharmacol ; 27(4): 375-381, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37386835

RESUMEN

Numerous studies have revealed the importance of tumor-derived exosomes in rectal cancer (RC). This study aims to explore the influence of tumor-derived exosomal integrin beta-1 (ITGB1) on lung fibroblasts in RC along with underlying mechanisms. Exosome morphology was observed using a transmission electron microscope. Protein levels of CD63, CD9, ITGB1, p-p65 and p65 were detected using Western blot. To determine ITGB1's mRNA expression, quantitative real-time polymerase chain reaction was used. Moreover, levels of interleukin (IL)-8, IL-1ß, and IL-6 in cell culture supernatant were measured via commercial ELISA kits. ITGB1 expression was increased in exosomes from RC cells. The ratio of p-p65/p65 as well as levels of interleukins in lung fibroblasts was raised by exosomes derived from RC cells, while was reduced after down-regulation of exosomal ITGB1. The increased ratio of p-p65/p65 as well as levels of pro-inflammatory cytokines caused by exosomes from RC cells was reversed by the addition of nuclear factor kappa B (NF-κB) inhibitor. We concluded that the knockdown of RC cells-derived exosomal ITGB1 repressed activation of lung fibroblasts and the NF-κB pathway in vitro.

5.
J Bacteriol ; 204(7): e0007322, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35670588

RESUMEN

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) acts as a crucial virulence factor. We previously identified two T9SS component proteins, GldK and GldM, and one T9SS effector metallophosphoesterase, which play important roles in bacterial virulence. In this study, 19 T9SS-secreted proteins that contained a conserved T9SS C-terminal domain (CTD) were predicted in R. anatipestifer strain Yb2 by searching for CTD-encoding sequences in the whole genome. The proteins were confirmed with a liquid chromatography-tandem mass spectrometry analysis of the bacterial culture supernatant. Nine of them were reported in our previous study. We generated recombinant proteins and mouse antisera for the 19 predicted proteins to confirm their expression in the bacterial culture supernatant and in bacterial cells. Western blotting indicated that the levels of 14 proteins were significantly reduced in the T9SS mutant Yb2ΔgldM culture medium but were increased in the bacterial cells. RT-qPCR indicated that the expression of these genes did not differ between the wild-type strain Yb2 and the T9SS mutant Yb2ΔgldM. Nineteen mutant strains were successfully constructed to determine their virulence and proteolytic activity, which indicated that seven proteins are associated with bacterial virulence, and two proteins, AS87_RS04190 and AS87_RS07295, are protease-activity-associated virulence factors. In summary, we have identified at least 19 genes encoding T9SS-secreted proteins in the R. anatipestifer strain Yb2 genome, which encode multiple functions associated with the bacterium's virulence and proteolytic activity. IMPORTANCE Riemerella anatipestifer T9SS plays an important role in bacterial virulence. We have previously reported nine R. anatipestifer T9SS-secreted proteins and clarified the function of the metallophosphoesterase. In this study, we identified 10 more secreted proteins associated with the R. anatipestifer T9SS, in addition to the nine previously reported. Of these, 14 proteins showed significantly reduced secretion into the bacterial culture medium but increased expression in the bacterial cells of the T9SS mutant Yb2ΔgldM; seven proteins were shown to be associated with bacterial virulence; and two proteins, AS87_RS04190 and AS87_RS07295, were shown to be protease-activity-associated virulence factors. Thus, we have demonstrated that multiple R. anatipestifer T9SS-secreted proteins function in virulence and proteolytic activity.


Asunto(s)
Enfermedades de las Aves de Corral , Riemerella , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Patos/metabolismo , Patos/microbiología , Péptido Hidrolasas/metabolismo , Enfermedades de las Aves de Corral/microbiología , Riemerella/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Anal Chem ; 94(41): 14402-14409, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36197729

RESUMEN

Interest is growing in the creation of wearable sweat sensors for continuous, low-cost, and noninvasive health diagnosis at the molecular level. The biofouling phenomenon leads to degradation of sweat sensors' performance over time, further limiting the successive monitoring of human health status. However, to date, the mechanism of sweat fouling is still unclear, with the inability to provide effective guidance on antifouling strategies. This study clarifies chemical compositions in sweat fouling and fouling distributions on the surface of sensors. Gold film electrodes were prepared on glass and poly(ethylene terephthalate) (PET) substrates and contaminated by human facial sweat (from eccrine sweat glands and apocrine sweat glands) and palm sweat (only from eccrine sweat glands). A scanning electron microscope (SEM), an optical microscope (OM), and an atomic force microscope (AFM) were employed to study the surface morphology of biofouling electrodes. The existence of sweat fouling was characterized by AFM adhesion force, a Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectra (XPS). FTIR along with XPS was adopted to analyze the biofouling components, and differential reflectance spectroscopy (DRS) was undertaken to observe the distribution of biofouling on the surface of the electrodes. As a result, we found that neither skin cell pieces nor recognized protein adsorption is the dominant source of biofouling, but the lipids in sweat form an inhomogeneous fouling layer on the electrode surface to reduce the electrochemical reactivity of sensors. This study provides deeper insights into sweat biofouling components and distributions and points out the right direction for resolving the problem of limited continuity in wearable sweat sensors.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Etilenos , Oro , Humanos , Lípidos , Propiedades de Superficie , Sudor
7.
Appl Environ Microbiol ; 88(19): e0127622, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36106871

RESUMEN

Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Riemerella , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas/metabolismo , Patos/microbiología , Ácido Edético , Endonucleasas/genética , Endonucleasas/metabolismo , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Enfermedades de las Aves de Corral/microbiología , ARN/metabolismo , Ribonucleasas/metabolismo , Riemerella/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
Appl Environ Microbiol ; 88(11): e0240921, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35575548

RESUMEN

Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Riemerella , Animales , Bacitracina , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Patos/microbiología , Fibrinógeno/metabolismo , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Gelatina/metabolismo , Enfermedades de las Aves de Corral/microbiología , Riemerella/metabolismo , Serina , Subtilisinas/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Opt Lett ; 47(18): 4790-4793, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107091

RESUMEN

We report on an all-optical ultrasonic detecting method based on differential interference. A linearly polarized probe beam is split into two closely separated ones with orthogonal polarization. After interacting with propagating ultrasonic waves in a coupling media, the split beams are recombined into one beam, with its polarization being changed into an elliptical one by the elastic-optical effect. The recombined beam is filtered by an analyzer and detected by a photodetector. The bandwidth and noise-equivalent pressure (NEP) of the acoustic detector are determined to be 107.4 MHz and 2.18 kPa, respectively. We also demonstrate its feasibility for photoacoustic microscopy (PAM) using agar-embedded phantoms.


Asunto(s)
Técnicas Fotoacústicas , Ultrasonido , Acústica , Agar , Microscopía/métodos , Técnicas Fotoacústicas/métodos
10.
J Bacteriol ; 203(15): e0018121, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33972354

RESUMEN

Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biotina/biosíntesis , Infecciones por Flavobacteriaceae/veterinaria , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Aves de Corral/microbiología , Riemerella/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Patos , Infecciones por Flavobacteriaceae/microbiología , Gansos , Operón , Regiones Promotoras Genéticas , Conformación Proteica en Hélice alfa , Riemerella/genética , Riemerella/patogenicidad , Factores de Transcripción/química , Factores de Transcripción/genética , Pavos , Virulencia
11.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741629

RESUMEN

Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that bacterial virulence and secretion proteins of the type IX secretion system (T9SS) mutant strains Yb2ΔgldK and Yb2ΔgldM were significantly reduced, in comparison to those of wild-type strain Yb2. In this study, the T9SS secretion protein AS87_RS00980, which is absent from the secretion proteins of Yb2ΔgldK and Yb2ΔgldM, was investigated by construction of gene mutation and complementation strains. The virulence assessment showed >1,000-fold attenuated virulence and significantly reduced bacterial loads in the blood of ducks infected with Yb2Δ00980, the AS87_RS00980 gene deletion mutant strain. Bacterial virulence was recovered in complementation strain cYb2Δ00980 Further study indicated that the T9SS secretion protein AS87_RS00980 is a metallophosphoesterase (MPPE), which displayed phosphatase activity and was cytomembrane localized. Moreover, the optimal reactive pH and temperature were determined to be 7.0 and 60°C, respectively, and the Km and Vmax were determined to be 3.53 mM and 198.1 U/mg. The rMPPE activity was activated by Zn2+ and Cu2+ but inhibited by Fe3+, Fe2+, and EDTA. There are five conserved sites, namely, N267, H268 H351, H389, and H391, in the metallophosphatase domain. Mutant proteins Y267-rMPPE and Y268-rMPPE retained 29.30% and 19.81% relative activity, respectively, and mutant proteins Y351-rMPPE, Y389-rMPPE, and Y391-rMPPE lost almost all MPPE activity. Taken together, these results indicate that the R. anatipestiferAS87_RS00980 gene encodes an MPPE that is a secretion protein of T9SS that plays an important role in bacterial virulence.IMPORTANCERiemerella anatipestifer T9SS was recently discovered to be associated with bacterial gliding motility and secretion of virulence factors. Several T9SS genes have been identified, but no effector has been reported in R. anatipestifer to date. In this study, we identified the T9SS secretion protein AS87_RS00980 as an MPPE that displays phosphatase activity and is associated with bacterial virulence. The enzymatic activity of the rMPPE was determined, and the Km and Vmax were 3.53 mM and 198.1 U/mg, respectively. Five conserved sites were also identified. The AS87_RS00980 gene deletion mutant strain was attenuated >1,000-fold, indicating that MPPE is an important virulence factor. In summary, we identified that the R. anatipestiferAS87_RS00980 gene encodes an important T9SS effector, MPPE, which plays an important role in bacterial virulence.


Asunto(s)
Proteínas Bacterianas/genética , Riemerella/genética , Riemerella/patogenicidad , Proteínas Bacterianas/metabolismo , Riemerella/enzimología , Virulencia
12.
Anal Chem ; 91(24): 15959-15966, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31750653

RESUMEN

Performance of electroanalytical lab-on-a-chip devices is often limited by the mass transfer of electroactive species toward the electrode surface, due to the difficulty in applying external convection. This article describes the powerful signal enhancement attained with a 2.54 GHz miniature acoustic resonator integrated with an electrochemical device in a miniaturized cell. Acoustic resonator and an on-chip gold thin-film three-electrode electrochemical cell were arranged facing each other inside a structured poly(methyl methacrylate) chamber. Cyclic voltammetric and chronoamperometric responses of 1 mM ferrocene-methanol were recorded under resonator's actuation at powers ranging from 0 to 1 W. Finite element analysis was carried out to study the sono-electroanalytical process. Acoustic resonator's actuation greatly enhances the mass transport of electroactive species toward the electrode surface. The diffusion limited cyclic voltammetric and chronoamperometric currents increase around 10 and 20 times, respectively, with an input power of 1 W compared to those recorded under stagnant conditions. The improvement in electroanalytical process is mainly associated with acoustic resonator's vibration induced fluid streaming. The advantages of a miniaturized acoustic resonator, including the submillimeter small size, amenability for mass fabrication, cost effectiveness, low energy consumption, as well as outstanding enhancement of coupled electrochemical processes, will enable the production of highly sensitive compact electroanalytical devices.

13.
Chin J Cancer Res ; 31(4): 686-698, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31564811

RESUMEN

OBJECTIVE: Challenges remain in current practices of colorectal cancer (CRC) screening, such as low compliance, low specificities and expensive cost. This study aimed to identify high-risk groups for CRC from the general population using regular health examination data. METHODS: The study population consist of more than 7,000 CRC cases and more than 140,000 controls. Using regular health examination data, a model detecting CRC cases was derived by the classification and regression trees (CART) algorithm. Receiver operating characteristic (ROC) curve was applied to evaluate the performance of models. The robustness and generalization of the CART model were validated by independent datasets. In addition, the effectiveness of CART-based screening was compared with stool-based screening. RESULTS: After data quality control, 4,647 CRC cases and 133,898 controls free of colorectal neoplasms were used for downstream analysis. The final CART model based on four biomarkers (age, albumin, hematocrit and percent lymphocytes) was constructed. In the test set, the area under ROC curve (AUC) of the CART model was 0.88 [95% confidence interval (95% CI), 0.87-0.90] for detecting CRC. At the cutoff yielding 99.0% specificity, this model's sensitivity was 62.2% (95% CI, 58.1%-66.2%), thereby achieving a 63-fold enrichment of CRC cases. We validated the robustness of the method across subsets of test set with diverse CRC incidences, aging rates, genders ratio, distributions of tumor stages and locations, and data sources. Importantly, CART-based screening had the higher positive predictive value (1.6%) than fecal immunochemical test (0.3%). CONCLUSIONS: As an alternative approach for the early detection of CRC, this study provides a low-cost method using regular health examination data to identify high-risk individuals for CRC for further examinations. The approach can promote early detection of CRC especially in developing countries such as China, where annual health examination is popular but regular CRC-specific screening is rare.

14.
Chem Rec ; 18(7-8): 749-758, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29806230

RESUMEN

The synthesis of organic-inorganic nanocomposites that can interact with different environmental pollutants and can be mass-produced are very promising materials for the fabrication of chemical sensor devices. Among them, metal (or metal oxide) nanoparticles doped conductive porous carbon composites can be readily applied to the production of electrochemical sensors and show enhanced sensitivity for the measurement of water pollutants, thanks to the abundant accessible and functional sites provided by the interconnected porosity and the metallic nanoparticles, respectively. In this personal account, an overview of several synthesis routes of porous carbon composites containing metallic nanoparticles is given, paying special attention to those based on sol-gel techniques. These are very powerful to synthesize hybrid porous materials that can be easily processed into powders and thin films, so that they can be implemented in electrode fabrication processes based on screen-printing and lithography techniques, respectively. We emphasize the sol-gel routes developed in our group for the synthesis of bismuth or gold nanoparticle doped porous carbon composites applied to fabricate electrochemical sensors that can be scaled down to produce miniaturized on-chip sensing devices for the sensitive detection of heavy metal pollutants in water. The trend towards the miniaturization of electrochemical sensors to be readily employed as analytical tools in environmental monitoring follow the market requirements of rapid and accurate on-site analysis, small sample consumption and waste production, as well as potential for continuous or semi-continuous in-situ determination of a wide variety of target analytes.

15.
Org Biomol Chem ; 16(41): 7748-7752, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30298897

RESUMEN

A simple cumene (isopropylbenzene, IPB) promoted auto-oxidation involved tandem radical cyclization of N-methacryloyl benzamides using stable and easy-to-handle CBr4 as the bromine source is described. This strategy provides an efficient and practical approach for the synthesis of bromine containing isoquinolinediones. This method also presents a new way to generate bromine radicals using a mild auto-oxidation pathway.

16.
Molecules ; 24(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597882

RESUMEN

The ketones was successfully prepared from secondary alcohols using 9-azabicyclo[3.3.1]nonane-N-oxyl (ABNO) as the catalyst and 2,6-lutidine as the base in acetonitrile solution. The electrochemical activity of ABNO for oxidation of 1-phenylethanol was investigated by cyclic voltammetry, in situ Fourier transform infrared spectroscopy (FTIR) and constant current electrolysis experiments. The resulting cyclic voltammetry indicated that ABNO exhibited much higher electrochemical activity when compared with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under the similar conditions. A reasonable reaction mechanism of the electrocatalytic oxidation of 1-phenylethanol to acetophenone was proposed. In addition, a series of secondary alcohols could be converted to the corresponding ketones at room temperature in 80⁻95% isolated yields.


Asunto(s)
Acetonitrilos/química , Alcoholes/química , Técnicas Electroquímicas , Catálisis , Electrólisis , Cetonas/síntesis química , Oxidación-Reducción , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
17.
Anal Chem ; 89(21): 11372-11377, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28960064

RESUMEN

Changes in electrical impedance have previously been used to measure fluid flow rate in microfluidic channels. Ionic redistribution within the electrical double layer by fluid flow has been considered to be the primary mechanism underlying such impedance based microflow sensors. Here we describe a previously unappreciated contribution of microchannel deformation to such measurements. We found that flow-induced microchannel deformation contributes significantly to the change in electrical impedance of solutions, in particular to those solutions producing an electrical double layer in the order of a few tens of nanometers (i.e., containing relatively high ionic strength). Since the flow velocity at the measurement surface is near zero, due to the laminar nature of the flow, the contribution of the double layer under the conditions mentioned above should be negligible. In contrast, an increase in the fluid flow rate results in an increase in the microchannel cross-sectional area (because of higher local pressure), therefore, producing a decrease in solution resistance between the two electrodes. Our results suggest that microflow sensors based on the concept of elastic deformation could be designed for in situ monitoring and fine control of fluid flow in flexible microfluidics. Finally, we show that purposefully engineering a larger deformability of the microchannel, by changing the geometry and the Young's modulus of the microchannel, enhances the sensitivity of this flow rate measurement.

20.
J Org Chem ; 80(2): 1018-24, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25506709

RESUMEN

2-Amino-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles were synthesized via condensation of semicarbazide/thiosemicarbazide and the corresponding aldehydes followed by I2-mediated oxidative C­O/C­S bond formation. This transition-metal-free sequential synthesis process is compatible with aromatic, aliphatic, and cinnamic aldehydes, providing facile access to a variety of diazole derivatives bearing a 2-amino substituent in an efficient and scalable fashion.


Asunto(s)
Oxadiazoles/síntesis química , Semicarbacidas/química , Tiadiazoles/síntesis química , Estructura Molecular , Oxadiazoles/química , Oxidación-Reducción , Tiadiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA