Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Infect Drug Resist ; 17: 2289-2298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860227

RESUMEN

Introduction: Candida is the primary cause of invasive fungal disease, candidiasis, especially in developed nations. The increasing resistance observed in multiple antibiotics, coupled with the prolonged process of creating new antibiotics from the ground up, emphasizes the urgent requirement for innovative methods and new compounds to combat Candida infections. Employing a treatment strategy that combines antibiotics can improve efficacy, broaden the spectrum of targeted fungal, and reduce the chances of resistance emergence. This approach shows potential in tackling the escalating problem of antibiotic resistance. The objective of this research is to explore the potential synergistic effects of combining 3-hydrazinoquinoxaline-2-thiol and thymoquinone against a variety of Candida isolates. This investigation aims to offer an understanding of the collective antimicrobial action of these compounds. Methods: Broth microdilution was utilized to assess the Minimum Inhibitory Concentrations (MICs) of 3-hydrazinoquinoxaline-2-thiol and thymoquinone for 22 clinical Candida isolates. Following this, a checkerboard assay was employed to analyze the interaction between 3-hydrazinoquinoxaline-2-thiol and thymoquinone, with a specific focus on the Fractional Inhibitory Concentration Index (FICI). Results: The MICs of thymoquinone and 3-hydrazinoquinoxaline-2-thiol were determined for 22 clinical Candida strains, with thymoquinone exhibiting MICs ranging from 64 to 8 µg/mL, and 3-hydrazinoquinoxaline-2-thiol displaying MICs varying from 64 to 8 µg/mL. Notably, the combination of 3-hydrazinoquinoxaline-2-thiol and thymoquinone resulted in a synergistic effect, leading to a significant reduction in MICs, with reductions of up to 64-fold with FICI below 0.5 against tested strains. Conclusion: The prospect of using 3-hydrazinoquinoxaline-2-thiol in combination with thymoquinone as an effective solution against Candida looks encouraging. Nevertheless, to validate its practical applicability, additional comprehensive testing and experiments are imperative.

2.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250414

RESUMEN

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

3.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502682

RESUMEN

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.

4.
Biomedicines ; 11(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371746

RESUMEN

The presence of COVID-19 antibodies in the maternal circulation is assumed to be protective for newborns against SARS-CoV-2 infection. We investigated whether maternal COVID-19 antibodies crossed the transplacental barrier and whether there was any difference in the hematological parameters of neonates born to mothers who recovered from COVID-19 during pregnancy. The cross-sectional study was conducted at the Saidu Group of Teaching Hospitals, located in Swat, Khyber Pakhtunkhwa. After obtaining written informed consent, 115 healthy, unvaccinated mother-neonate dyads were included. A clinical history of COVID-19-like illness, laboratory-confirmed diagnosis, and contact history were obtained. Serum samples from mothers and neonates were tested for SARS-CoV-2 anti-receptor-binding domain (anti-RBD) IgG antibodies. Hematological parameters were assessed with complete blood counts (CBC) and peripheral blood smear examinations. The study population consisted of 115 mothers, with a mean age of 29.44 ± 5.75 years, and most women (68/115 (59.1%)) were between 26 and 35 years of age. Of these mothers, 88/115 (76.5 percent) tested positive for SARS-CoV-2 anti-RBD IgG antibodies, as did 83/115 (72.2 percent) neonatal cord blood samples. The mean levels of SARS-CoV-2 IgG antibodies in maternal and neonatal blood were 19.86 ± 13.82 (IU/mL) and 16.16 ± 12.90 (IU/mL), respectively, indicating that maternal antibodies efficiently crossed the transplacental barrier with an antibody transfer ratio of 0.83. The study found no significant difference in complete blood count (CBC) parameters between seropositive and seronegative mothers, nor between neonates born to seropositive and seronegative mothers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA