Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Neuropathol ; 139(5): 837-853, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32065260

RESUMEN

In amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), spinal and lower brainstem motor neurons degenerate, but some motor neuron subtypes are spared, including oculomotor neurons (OMNs). The mechanisms responsible for this selective degeneration are largely unknown, but the molecular signatures of resistant and vulnerable motor neurons are distinct and offer clues to neuronal resilience and susceptibility. Here, we demonstrate that healthy OMNs preferentially express Synaptotagmin 13 (SYT13) compared to spinal motor neurons. In end-stage ALS patients, SYT13 is enriched in both OMNs and the remaining relatively resilient spinal motor neurons compared to controls. Overexpression of SYT13 in ALS and SMA patient motor neurons in vitro improves their survival and increases axon lengths. Gene therapy with Syt13 prolongs the lifespan of ALS mice by 14% and SMA mice by 50% by preserving motor neurons and delaying muscle denervation. SYT13 decreases endoplasmic reticulum stress and apoptosis of motor neurons, both in vitro and in vivo. Thus, SYT13 is a resilience factor that can protect motor neurons and a candidate therapeutic target across motor neuron diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Sinaptotagminas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Enfermedad de la Neurona Motora/metabolismo , Superóxido Dismutasa/genética
2.
Cell Mol Life Sci ; 67(22): 3837-47, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20668908

RESUMEN

Motor neuron diseases (MNDs) are a group of neurological disorders that selectively affect motor neurons. There are currently no cures or efficacious treatments for these diseases. In recent years, significant developments in stem cell research have been applied to MNDs, particularly regarding neuroprotection and cell replacement. However, a consistent source of motor neurons for cell replacement is required. Human embryonic stem cells (hESCs) could provide an inexhaustible supply of differentiated cell types, including motor neurons that could be used for MND therapies. Recently, it has been demonstrated that induced pluripotent stem (iPS) cells may serve as an alternative source of motor neurons, since they share ES characteristics, self-renewal, and the potential to differentiate into any somatic cell type. In this review, we discuss several reproducible methods by which hESCs or iPS cells are efficiently isolated and differentiated into functional motor neurons, and possible clinical applications.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Neuronas Motoras/citología , Neurogénesis , Separación Celular/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/terapia , Neuronas Motoras/metabolismo , Neuronas Motoras/trasplante
3.
Methods Mol Biol ; 1565: 229-239, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28364247

RESUMEN

The use of antisense oligonucleotides to target specific mRNA sequences represents a promising therapeutic strategy for neurological disorders. Recent advances in antisense technology enclose the development of phosphorodiamidate morpholino oligomers (MO), which is one of the best candidates for molecular therapies due to MO's excellent pharmacological profile.Nevertheless, the route of administration of antisense compounds represents a critical issue in the neurological field. Particularly, as regards motor neuron diseases, intracerebroventricular (ICV) injection is undoubtedly the most efficient procedure to directly deliver therapeutic molecules in the central nervous system (CNS). Indeed, we recently demonstrated the outstanding efficacy of the MO antisense approach by its direct administration to CNS of the transgenic mouse models of Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS).Here, we describe methods to perform the ICV delivery of MO in neonatal SMA mice and in adult ALS mice.


Asunto(s)
Técnicas de Transferencia de Gen , Morfolinos/administración & dosificación , Morfolinos/genética , Enfermedad de la Neurona Motora/genética , Neuronas Motoras/metabolismo , Alelos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Animales , Modelos Animales de Enfermedad , Sitios Genéticos , Terapia Genética , Infusiones Intraventriculares , Ratones , Ratones Transgénicos , Enfermedad de la Neurona Motora/terapia , Mutación , Fenotipo , Superóxido Dismutasa-1/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
4.
Sci Rep ; 6: 21301, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26878886

RESUMEN

Neurotoxicity due to the accumulation of mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (fALS); these mutations result in progressive motor neuron death through one or more acquired toxicities. Interestingly, SOD1 is not only responsible for fALS but may also play a significant role in sporadic ALS; therefore, SOD1 represents a promising therapeutic target. Here, we report slowed disease progression, improved neuromuscular function, and increased survival in an in vivo ALS model following therapeutic delivery of morpholino oligonucleotides (MOs) designed to reduce the synthesis of human SOD1. Neuropathological analysis demonstrated increased motor neuron and axon numbers and a remarkable reduction in astrogliosis and microgliosis. To test this strategy in a human model, we treated human fALS induced pluripotent stem cell (iPSC)-derived motor neurons with MOs; these cells exhibited increased survival and reduced expression of apoptotic markers. Our data demonstrated the efficacy of MO-mediated therapy in mouse and human ALS models, setting the stage for human clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Superóxido Dismutasa-1/genética , Animales , Apoptosis , Axones/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Silenciador del Gen , Células HeLa , Humanos , Células Madre Pluripotentes Inducidas/citología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Oligonucleótidos/genética , Pliegue de Proteína , Médula Espinal/metabolismo
5.
Neuroscience ; 291: 216-29, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25697826

RESUMEN

The lethal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons. However, not all motor neurons are equally vulnerable to disease; certain groups are spared, including those in the oculomotor nucleus controlling eye movement. The reasons for this differential vulnerability remain unknown. Here we have identified a protein signature for resistant oculomotor motor neurons and vulnerable hypoglossal and spinal motor neurons in mouse and man and in health and ALS with the aim of understanding motor neuron resistance. Several proteins with implications for motor neuron resistance, including GABAA receptor α1, guanylate cyclase soluble subunit alpha-3 and parvalbumin were persistently expressed in oculomotor neurons in man and mouse. Vulnerable motor neurons displayed higher protein levels of dynein, peripherin and GABAA receptor α2, which play roles in retrograde transport and excitability, respectively. These were dynamically regulated during disease and thus could place motor neurons at an increased risk. From our analysis is it evident that oculomotor motor neurons have a distinct protein signature compared to vulnerable motor neurons in brain stem and spinal cord, which could in part explain their resistance to degeneration in ALS. Our comparison of human and mouse shows the relative conservation of signals across species and infers that transgenic SOD1G93A mice could be used to predict mechanisms of neuronal vulnerability in man.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Células del Asta Anterior/metabolismo , Tronco Encefálico/metabolismo , Neuronas Motoras/metabolismo , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/patología , Animales , Células del Asta Anterior/patología , Tronco Encefálico/patología , Recuento de Células , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras/patología , Degeneración Nerviosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA