Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Syst Biol ; 17(9): e10272, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34569155

RESUMEN

It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.


Asunto(s)
Cromatina , ARN Polimerasa II , Animales , Cromatina/genética , ARN , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo
2.
PLoS Comput Biol ; 17(5): e1008974, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33951053

RESUMEN

The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin.


Asunto(s)
Eucromatina/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Humanos , Dominios Proteicos , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA