Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 137(19): 3315-25, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823068

RESUMEN

During asymmetric cell division, cell polarity and cell cycle progression are tightly coordinated, yet mechanisms controlling both these events are poorly understood. Here we show that the Bora homologue SPAT-1 regulates both PAR polarity and cell cycle progression in C. elegans embryos. We find that, similarly to mammalian cells, SPAT-1 acts with PLK-1 and not with the mitotic kinase Aurora A (AIR-1), as shown in Drosophila. SPAT-1 binds to PLK-1, and depletion of SPAT-1 or PLK-1 leads to similar cell division defects in early embryos, which differ from the defects caused by depletion of AIR-1. Additionally, SPAT-1 and PLK-1 depletion causes impaired polarity with abnormal length of the anterior and posterior PAR domains, and partial plk-1(RNAi) or spat-1(RNAi), but not air-1(RNAi), can rescue the lethality of a par-2 mutant. SPAT-1 is enriched in posterior cells, and this enrichment depends on PAR polarity and PLK-1. Taken together, our data suggest a model in which SPAT-1 promotes the activity of PLK-1 to regulate both cell polarity and cell cycle timing during asymmetric cell division, providing a link between these two processes.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Polaridad Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Quinasa Tipo Polo 1
2.
Nat Commun ; 9(1): 2042, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795284

RESUMEN

Kinetochores are multi-protein complexes that power chromosome movements by tracking microtubules plus-ends in the mitotic spindle. Human kinetochores bind up to 20 microtubules, even though single microtubules can generate sufficient force to move chromosomes. Here, we show that high microtubule occupancy at kinetochores ensures robust chromosome segregation by providing a strong mechanical force that favours segregation of merotelic attachments during anaphase. Using low doses of the microtubules-targeting agent BAL27862 we reduce microtubule occupancy and observe that spindle morphology is unaffected and bi-oriented kinetochores can still oscillate with normal intra-kinetochore distances. Inter-kinetochore stretching is, however, dramatically reduced. The reduction in microtubule occupancy and inter-kinetochore stretching does not delay satisfaction of the spindle assembly checkpoint or induce microtubule detachment via Aurora-B kinase, which was so far thought to release microtubules from kinetochores under low stretching. Rather, partial microtubule occupancy slows down anaphase A and increases incidences of lagging chromosomes due to merotelically attached kinetochores.


Asunto(s)
Aurora Quinasa B/metabolismo , Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Anafase/efectos de los fármacos , Anafase/fisiología , Bencimidazoles/farmacología , Línea Celular , Segregación Cromosómica/efectos de los fármacos , Humanos , Microscopía Intravital , Cinetocoros/ultraestructura , Microscopía Electrónica , Microtúbulos/ultraestructura , Oxadiazoles/farmacología , Huso Acromático/efectos de los fármacos
3.
Cancer Cell ; 32(4): 444-459.e7, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-29017056

RESUMEN

Proper organization of the mitotic spindle is key to genetic stability, but molecular components of inter-microtubule bridges that crosslink kinetochore fibers (K-fibers) are still largely unknown. Here we identify a kinase-independent function of class II phosphoinositide 3-OH kinase α (PI3K-C2α) acting as limiting scaffold protein organizing clathrin and TACC3 complex crosslinking K-fibers. Downregulation of PI3K-C2α causes spindle alterations, delayed anaphase onset, and aneuploidy, indicating that PI3K-C2α expression is required for genomic stability. Reduced abundance of PI3K-C2α in breast cancer models initially impairs tumor growth but later leads to the convergent evolution of fast-growing clones with mitotic checkpoint defects. As a consequence of altered spindle, loss of PI3K-C2α increases sensitivity to taxane-based therapy in pre-clinical models and in neoadjuvant settings.


Asunto(s)
Neoplasias de la Mama/patología , Inestabilidad Genómica , Fosfatidilinositol 3-Quinasas/fisiología , Huso Acromático/fisiología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/fisiología , Proliferación Celular , Humanos , Células MCF-7 , Proteínas Mad2/fisiología , Ratones , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Taxoides/uso terapéutico
4.
J Cell Biol ; 208(6): 661-9, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25753036

RESUMEN

The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho-SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing.


Asunto(s)
Proteína Quinasa CDC2/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasa A/metabolismo , Caenorhabditis elegans/enzimología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Activación Enzimática , Humanos , Larva/citología , Larva/enzimología , Mitosis , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Células Sf9 , Spodoptera
5.
Open Biol ; 3(8): 130083, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926048

RESUMEN

Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Polaridad Celular/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular/genética , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Polaridad Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino
6.
Essays Biochem ; 53: 1-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22928504

RESUMEN

Cell polarity is crucial for many functions including cell migration, tissue organization and asymmetric cell division. In animal cells, cell polarity is controlled by the highly conserved PAR (PARtitioning defective) proteins. par genes have been identified in Caenorhabditis elegans in screens for maternal lethal mutations that disrupt cytoplasmic partitioning and asymmetric division. Although PAR proteins were identified more than 20 years ago, our understanding on how they regulate polarity and how they are regulated is still incomplete. In this chapter we review our knowledge of the processes of cell polarity establishment and maintenance, and asymmetric cell division in the early C. elegans embryo. We discuss recent findings that highlight new players in cell polarity and/or reveal the molecular details on how PAR proteins regulate polarity processes.


Asunto(s)
División Celular Asimétrica/genética , Caenorhabditis elegans/embriología , Polaridad Celular/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/fisiología , Transducción de Señal , Huso Acromático/genética , Huso Acromático/metabolismo
7.
J Cell Biol ; 199(7): 1025-35, 2012 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-23266953

RESUMEN

Correct alignment of the mitotic spindle during cell division is crucial for cell fate determination, tissue organization, and development. Mutations causing brain diseases and cancer in humans and mice have been associated with spindle orientation defects. These defects are thought to lead to an imbalance between symmetric and asymmetric divisions, causing reduced or excessive cell proliferation. However, most of these disease-linked genes encode proteins that carry out multiple cellular functions. Here, we discuss whether spindle orientation defects are the direct cause for these diseases, or just a correlative side effect.


Asunto(s)
Huso Acromático/metabolismo , Animales , Polaridad Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Centrosoma/metabolismo , Centrosoma/patología , Humanos , Mitosis , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Huso Acromático/genética , Huso Acromático/patología
8.
Biophys J ; 93(5): 1778-86, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17416613

RESUMEN

As exciting light in a scanning confocal microscope encounters a cell and its subcellular components, it is refracted and scattered. A question arises as to what proportion of the exciting light is scattered by subcellular structures and whether cells in the vicinity of the imaged area, i.e., cells that are not directly illuminated by the laser beam, can be affected by either an exposure to scattered light and ensuing phototoxic reactions, or by the products of photoactivated reactions diffusing out of the directly illuminated area. We have designed a technique, which allows us to detect subtle cell photodamage and estimate the extent and range of phototoxic effects inflicted by interaction between scattered exciting light and fluorescent probes in the vicinity of the illuminated area. The technique is based on detecting an increased influx of acridine orange into photodamaged cells, which is manifested by a change of color. We demonstrate that phototoxic effects can be exerted not only on the illuminated cell, but also on fluorescently labeled neighboring cells. The damage inflicted on neighbors is due to exposure to light scattered by the imaged (i.e., directly illuminated) cell, but not phototoxic products diffusing out of the directly illuminated area. When light encounters a cell nucleus, scattering is so intense that photodamage can be inflicted even on fluorescently labeled cells located within a radius of approximately 90 microm, i.e., several cell diameters away. This range of scattering is comparable with that caused by the glass bead resting on a coverslip (up to 120 microm). The intense scattering of exciting light imposes limits on FRAP, FLIP, and other techniques employing high intensity laser beams.


Asunto(s)
Biofisica/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Naranja de Acridina/farmacología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes/farmacología , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Rayos Láser , Luz , Fotoquímica/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA