RESUMEN
Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.
Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Cryptosporidium/efectos de los fármacos , Cryptosporidium/enzimología , Pirazoles/farmacología , Piridinas/farmacología , Animales , Animales Recién Nacidos , Bovinos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Huésped Inmunocomprometido , Interferón gamma/deficiencia , Interferón gamma/genética , Masculino , Ratones , Ratones Noqueados , Pirazoles/química , Pirazoles/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratas , Ratas WistarRESUMEN
Dengue virus (DENV) was designated as a top 10 public health threat by the World Health Organization in 2019. No clinically approved anti-DENV drug is currently available. Here we report the high-resolution cocrystal structure (1.5 Å) of the DENV-2 capsid protein in complex with an inhibitor that potently suppresses DENV-2 but not other DENV serotypes. The inhibitor induces a "kissing" interaction between two capsid dimers. The inhibitor-bound capsid tetramers are assembled inside virions, resulting in defective uncoating of nucleocapsid when infecting new cells. Resistant DENV-2 emerges through one mutation that abolishes hydrogen bonds in the capsid structure, leading to a loss of compound binding. Structure-based analysis has defined the amino acids responsible for the inhibitor's inefficacy against other DENV serotypes. The results have uncovered an antiviral mechanism through inhibitor-induced tetramerization of the viral capsid and provided essential structural and functional knowledge for rational design of panserotype DENV capsid inhibitors.
Asunto(s)
Antivirales/química , Proteínas de la Cápside/química , Virus del Dengue , Modelos Moleculares , Conformación Proteica , Secuencia de Aminoácidos , Antivirales/farmacología , Sitios de Unión , Proteínas de la Cápside/genética , Virus del Dengue/efectos de los fármacos , Mutación , Nucleocápside/química , Nucleocápside/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-ActividadRESUMEN
Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.
Asunto(s)
Virus del Dengue/genética , Virus del Dengue/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Antivirales/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dengue/virología , Transcriptasa Inversa del VIH , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Replicón , Alineación de Secuencia , Análisis de Secuencia de Proteína , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiologíaRESUMEN
The bioconversion of Withania somnifera extract by the fungus Beauveria bassiana leads to cysteine and glutathione derivatives of withaferin A at the C-6 position. The compounds were purified and fully characterized by 1D-NMR, 2D-NMR, and HRMS analysis. The glutathione derivative CR-777 was evaluated as a neuroprotective agent from damage caused by different neurotoxins mimicking molecular symptoms in Parkinson´s disease (PD), including 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA), and α-synuclein (α-Syn). CR-777, at nanomolar concentrations, protected dopaminergic and cortical neurons. In 6-OHDA-treated neurons, CR-777 increased cell survival and neurite network and decreased the expression of α-Syn. Using specific inhibitors of cell toxicity signaling pathways and specific staining experiments, the observed role of CR-777 seemed to involve the PI3K/mTOR pathway. CR-777 could be considered as a protective agent against a large panel of neuronal stressors and was engaged in further therapeutic development steps.
Asunto(s)
Beauveria/metabolismo , Glutatión/análogos & derivados , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Withania/metabolismo , Witanólidos/química , Witanólidos/farmacología , Biotransformación , Cromatografía Líquida de Alta Presión , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Witanólidos/aislamiento & purificaciónRESUMEN
Flaviviruses comprise major emerging pathogens such as dengue virus (DENV) or Zika virus (ZIKV). The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp) domain of non-structural protein 5 (NS5). This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket"). Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 µM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas no Estructurales Virales/antagonistas & inhibidores , Células A549 , Antivirales/química , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/química , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Dominios Proteicos , ARN Polimerasa Dependiente del ARN/química , Resonancia por Plasmón de Superficie , Proteínas no Estructurales Virales/químicaRESUMEN
Flavivirus NS5 RNA-dependent RNA polymerase (RdRp) is an important drug target. Whilst a number of allosteric inhibitors have been described for Hepatitis C virus RdRp, few have been described for DENV RdRp. In addition, compound screening campaigns have not yielded suitable leads for this enzyme. Using fragment-based screening via X-ray crystallography, we identified a biphenyl acetic acid fragment that binds to a novel pocket of the dengue virus (DENV) RdRp, in the thumb/palm interface, close to its active site (termed "N pocket"). Structure-guided optimization yielded nanomolar inhibitors of the RdRp de novo initiation activity, with low micromolar EC50 in DENV cell-based assays. Compound-resistant DENV replicons exhibited amino acid mutations that mapped to the N pocket. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors and provides a significant opportunity for rational design of novel therapeutics against this proven antiviral target.
Asunto(s)
Antivirales/química , Antivirales/farmacología , Virus del Dengue/enzimología , Dengue/virología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Animales , Dengue/tratamiento farmacológico , Virus del Dengue/química , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Diseño de Fármacos , Humanos , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
We performed a fragment screen on the dengue virus serotype 3 RNA-dependent RNA polymerase using x-ray crystallography. A screen of 1,400 fragments in pools of eight identified a single hit that bound in a novel pocket in the protein. This pocket is located in the polymerase palm subdomain and conserved across the four serotypes of dengue virus. The compound binds to the polymerase in solution as evidenced by surface plasmon resonance and isothermal titration calorimetry analyses. Related compounds where a phenyl is replaced by a thiophene show higher affinity binding, indicating the potential for rational design. Importantly, inhibition of enzyme activity correlated with the binding affinity, showing that the pocket is functionally important for polymerase activity. This fragment is an excellent starting point for optimization through rational structure-based design.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Virus del Dengue/enzimología , Proteínas Virales/química , Dominio Catalítico , Cristalografía por Rayos X , Estructura Terciaria de ProteínaRESUMEN
Cyclomarin A (CymA) was identified as a mycobactericidal compound targeting ClpC1. However, the target was identified based on pulldown experiments and in vitro binding data, without direct functional evidence in mycobacteria. Here we show that CymA specifically binds to the N-terminal domain of ClpC1. In addition we have determined the co-crystal structure of CymA bound to the N-terminal domain of ClpC1 to high resolution. Based on the structure of the complex several mutations were engineered into ClpC1, which showed reduced CymA binding in vitro. The ClpC1 mutants were overexpressed in mycobacteria and two showed resistance to CymA, providing the first direct evidence that ClpC1 is the target of CymA. Phe(80) is important in vitro and in cells for the ClpC1-CymA interaction and this explains why other bacteria are resistant to CymA. A model for how CymA binding to the N-terminal domain of ClpC1 leads to uncontrolled proteolysis by the associated ClpP protease machinery is discussed.
Asunto(s)
Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Oligopéptidos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oligopéptidos/metabolismo , Unión Proteica , Estructura Terciaria de ProteínaRESUMEN
The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
Asunto(s)
Virus del Dengue/enzimología , Complejos Multienzimáticos/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Virus del Dengue/genética , Humanos , Espectroscopía de Resonancia Magnética , Complejos Multienzimáticos/genética , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , ARN Helicasas/química , ARN Helicasas/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Proteínas no Estructurales Virales/genéticaRESUMEN
We report a highly reproducible method to crystallize the RNA-dependent RNA polymerase (RdRp) domain of dengue virus serotype 3 (DENV-3), allowing structure refinement to a 1.79-Å resolution and revealing amino acids not seen previously. We also present a DENV-3 polymerase/inhibitor cocrystal structure at a 2.1-Å resolution. The inhibitor binds to the RdRp as a dimer and causes conformational changes in the protein. The improved crystallization conditions and new structural information should accelerate structure-based drug discovery.
Asunto(s)
Virus del Dengue/enzimología , Inhibidores Enzimáticos/química , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Cristalización , Virus del Dengue/química , Virus del Dengue/genética , Dimerización , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Dengue is a mosquito-borne viral hemorrhagic disease that is a major threat to human health in tropical and subtropical regions. Here we report crystal structures of a peptide covalently bound to dengue virus serotype 3 (DENV-3) protease as well as the serine-protease inhibitor aprotinin bound to the same enzyme. These structures reveal, for the first time, a catalytically active, closed conformation of the DENV protease. In the presence of the peptide, the DENV-3 protease forms the closed conformation in which the hydrophilic ß-hairpin region of NS2B wraps around the NS3 protease core, in a manner analogous to the structure of West Nile virus (WNV) protease. Our results confirm that flavivirus proteases form the closed conformation during proteolysis, as previously proposed for WNV. The current DENV-3 protease structures reveal the detailed interactions at the P4' to P3 sites of the substrate. The new structural information explains the sequence preference, particularly for long basic residues in the nonprime side, as well as the difference in substrate specificity between the WNV and DENV proteases at the prime side. Structural analysis of the DENV-3 protease-peptide complex revealed a pocket that is formed by residues from NS2B and NS3; this pocket also exists in the WNV NS2B/NS3 protease structure and could be targeted for potential antivirus development. The structural information presented in the current study is invaluable for the design of specific inhibitors of DENV protease.
Asunto(s)
Virus del Dengue/enzimología , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalización , Virus del Dengue/química , Virus del Dengue/genética , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas , Unión Proteica , Conformación Proteica , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome.
Asunto(s)
Antivirales/química , Virus del Dengue/enzimología , Inhibidores Enzimáticos/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , S-Adenosilmetionina/análogos & derivados , S-Adenosilmetionina/química , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/química , Antivirales/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dengue/tratamiento farmacológico , Dengue/enzimología , Dengue/genética , Virus del Dengue/genética , Inhibidores Enzimáticos/farmacología , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , S-Adenosilmetionina/farmacología , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
The C-terminal domain (CTD) of the large subunit of RNA polymerase II is a platform for mRNA processing factors and links gene transcription to mRNA capping, splicing and polyadenylation. Pcf11, an essential component of the mRNA cleavage factor IA, contains a CTD-interaction domain that binds in a phospho-dependent manner to the heptad repeats within the RNA polymerase II CTD. We show here that the phosphorylated CTD exists as a dynamic disordered ensemble in solution and, by induced fit, it assumes a structured conformation when bound to Pcf11. In addition, we detected cis-trans populations for the CTD prolines, and found that only the all-trans form is selected for binding. These data suggest that the recognition of the CTD is regulated by independent site-specific modifications (phosphorylation and proline cis-trans isomerization) and, probably, by the local concentration of suitable binding sites.
Asunto(s)
ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismoRESUMEN
Sterile alpha motif (SAM) domains are found in many different proteins and shown to play important roles in various biological processes. The N-terminal domain of deleted in liver cancer 1 (DLC1) protein is a SAM domain which exists in a monomeric form in aqueous solution and facilitates the distribution of EF1A1 to the membrane periphery and ruffles upon growth factor stimulation. Here, we report the structure of an N-terminal truncated DLC1 SAM domain (DLC1-SAM) and its urea-induced equilibrium unfolding investigated with various biophysical methods such as CD, fluorescence emission spectroscopy, and NMR. CD and tryptophan intrinsic fluorescence emission data imply that the unfolding of DLC1-SAM follows a simple two-state mechanism, yet the NMR data suggest the presence of at least one intermediate state. The intermediate cannot be detected by NMR, but it does not exist in large aggregates as shown by analytical ultracentrifugation experiments. Analysis of the free energy values for different residues shows that in the transition from the native state to non-native states the C-terminal helix is somewhat more stable than the other parts of the protein, whereas in the transition from the native and intermediate states to the denatured state, the stabilities of different residues are similar except for that of the region surrounding residues D37-F40 which has lower stability and is more readily denatured at high urea concentrations. Analysis of the midpoints of the transitions shows that the unfolding of the native state and formation of the denatured state are not cooperative and the unfolding of only a few residues seems to follow a two-state mechanism.
Asunto(s)
Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Dimerización , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Proteínas Activadoras de GTPasa , Histidina/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Proteínas Supresoras de Tumor/genética , Urea/farmacologíaRESUMEN
Pcf11 and Clp1 are subunits of cleavage factor IA (CFIA), an essential polyadenylation factor in Saccahromyces cerevisiae. We have determined the structure of a ternary complex of Clp1 together with ATP and the Clp1-binding region of Pcf11. Clp1 contains three domains, a small N-terminal beta sandwich domain, a C-terminal domain containing a novel alpha/beta-fold and a central domain that binds ATP. The arrangement of the nucleotide binding site is similar to that observed in SIMIBI-class ATPase subunits found in other multisubunit macromolecular complexes. However, despite this similarity, nucleotide hydrolysis does not occur. The Pcf11 binding site is also located in the central domain where three highly conserved residues in Pcf11 mediate many of the protein-protein interactions. We propose that this conserved Clp1-Pcf11 interaction is responsible for maintaining a tight coupling between the Clp1 nucleotide binding subunit and the other components of the polyadenylation machinery. Moreover, we suggest that this complex represents a stabilized ATP bound form of Clp1 that requires the participation of other non-CFIA processing factors in order to initiate timely ATP hydrolysis during 3' end processing.
Asunto(s)
Adenosina Trifosfato/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Factores de Escisión y Poliadenilación de ARNm/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Factores de Escisión y Poliadenilación de ARNm/metabolismoRESUMEN
The Rna14-Rna15 complex is a core component of the cleavage factor IA RNA-processing complex from Saccharomyces cerevisiae. To understand the assembly and RNA-binding properties, we have isolated and characterized the Rna14-Rna15 complex using a combination of biochemical and biophysical methods. Analysis of the purified complex, using transmission electron microscopy, reveals that the two proteins assemble into a kinked rod-shaped structure and that these rods are able to further self-associate. Analytical ultracentrifugation reveals that Rna14 mediates this association and facilitates assembly of an A2B2 tetramer (M(r) 230 000), where relatively compact Rna14-Rna15 heterodimers are in rapid equilibrium with tetramers that have a more extended shape. The Rna14-Rna15 complex, unlike the individual components, binds to an RNA oligonucleotide derived from the 3'-untranslated region of the S.cerevisiae GAL7 gene. Based on these structural and thermodynamic data, we propose that CFIA assembly regulates RNA-binding activity.
Asunto(s)
ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Sustancias Macromoleculares , Modelos Biológicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Escisión y Poliadenilación de ARNm/ultraestructuraAsunto(s)
Antituberculosos/química , Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Mycobacterium tuberculosis/efectos de los fármacos , Oligopéptidos/química , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Oligopéptidos/farmacología , Unión ProteicaRESUMEN
The discovery and optimization of non-nucleoside dengue viral RNA-dependent-RNA polymerase (RdRp) inhibitors are described. An X-ray-based fragment screen of Novartis' fragment collection resulted in the identification of a biphenyl acetic acid fragment 3, which bound in the palm subdomain of RdRp. Subsequent optimization of the fragment hit 3, relying on structure-based design, resulted in a >1000-fold improvement in potency in vitro and acquired antidengue activity against all four serotypes with low micromolar EC50 in cell-based assays. The lead candidate 27 interacts with a novel binding pocket in the palm subdomain of the RdRp and exerts a promising activity against all clinically relevant dengue serotypes.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/enzimología , Inhibidores Enzimáticos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Antivirales/química , Calorimetría , Línea Celular , Diseño de Fármacos , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Resonancia por Plasmón de SuperficieRESUMEN
We have examined the role of the DNA gyrase B protein in cleavage and religation of DNA using site-directed mutagenesis. Three aspartate residues and a glutamate residue: E424, D498, D500 and D502, thought to co-ordinate a magnesium ion, were mutated to alanine; in addition, the glutamate residue and one aspartate residue were mutated to glutamine and asparagine, respectively. We have shown that these residues are important for the cleavage-religation reaction and are likely to be involved in magnesium ion co-ordination. On separate mutation of two of these aspartate residues to cysteine or histidine, the metal ion preference for the DNA relaxation activity of gyrase changed from magnesium to manganese (II). We present evidence to support the idea that cleavage of each DNA strand involves two or more metal ions, and suggest a scheme for the DNA cleavage chemistry of DNA gyrase involving two metal ions.
Asunto(s)
Girasa de ADN/química , Girasa de ADN/metabolismo , ADN Superhelicoidal/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Dominio Catalítico/genética , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Cisteína/química , Girasa de ADN/genética , ADN Superhelicoidal/química , Escherichia coli/enzimología , Escherichia coli/genética , Prueba de Complementación Genética , Histidina/química , Magnesio/metabolismo , Manganeso/metabolismo , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación ProteicaRESUMEN
The non-structural protein 5 (NS5) of flaviviruses is the most conserved amongst the viral proteins. It is about 900 kDa and bears enzymatic activities that play vital roles in virus replication. Its N-terminal domain encodes dual N7 and 2'-O methyltransferase activities (MTase), and possibly guanylyltransferase (GTase) involved in RNA cap formation. The C-terminal region comprises a RNA-dependent RNA polymerase (RdRp) required for viral RNA synthesis. Both MTase and RdRp activities of dengue virus NS5 are well characterized, structurally and functionally. Numerous crystal structures of the flavivirus MTase and RdRp domains have been solved. Inhibitors of both functions have been identified through screening activities using biochemical and cell-based assays, as well as via rational design approaches. This review summaries the current knowledge as well as prospective views on these aspects. This article forms part of a symposium on flavivirus drug discovery in Antiviral Research.