RESUMEN
Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.
RESUMEN
Enzyme-responsive hydrogels, formed by step growth photopolymerization of biscysteine peptide linkers with alkene functionalized polyethylene glycol, provide interesting opportunities as biomaterials and drug delivery systems. In this study, we developed stimuli-responsive, specific, and cytocompatible hydrogels for delivery of anti-inflammatory drugs for the treatment of inflammatory skin diseases. We designed peptide linkers with optimized sensitivity towards matrix metalloproteinases, a family of proteolytic enzymes overexpressed in the extracellular matrix of the skin during inflammation. The peptide linkers were crosslinked with branched 4-arm and 8-arm polyethylene glycols by thiol-norbornene photopolymerization, leading to the formation of a hydrogel network, in which the anti-inflammatory Janus kinase inhibitor tofacitinib citrate was incorporated. The hydrogels were extensively characterized by physical properties, in vitro release studies, cytocompatibility with fibroblasts, and anti-inflammatory efficacy testing in both an atopic dermatitis-like keratinocyte assay and an activated T-cell assay. The drug release was studied after single and multiple-time exposure to matrix metalloproteinase 9 to mimic inflammatory flare-ups. Drug release was found to be triggered by matrix metalloproteinase 9 and to depend on type of crosslinker and of the polyethylene glycol polymer, due to differences in architecture and swelling behavior. Moreover, swollen hydrogels showed elastic properties similar to those of extracellular matrix proteins in the dermis. Cell studies revealed limited cytotoxicity when fibroblasts and keratinocytes were exposed to the hydrogels or their enzymatic cleavage products. Taken together, our results suggest multi-arm polyethylene glycol hydrogels as promising matrix metalloproteinase-responsive drug delivery systems, with potential in the treatment of inflammatory skin disease. STATEMENT OF SIGNIFICANCE: Smart responsive drug delivery systems such as matrix metalloproteinase-responsive hydrogels are excellent candidates for the treatment of inflammatory skin diseases including psoriasis. Their release profile can be optimized to correspond to the patient's individual disease state by tuning formulation parameters and disease-related stimuli, providing personalized treatment solutions. However, insufficient cross-linking efficiency, low matrix metalloproteinase sensitivity, and undesirable drug release kinetics remain major challenges in the development of such drug delivery systems. In this study, we address shortcomings of previous work by designing peptide linkers with optimized sensitivity towards matrix metalloproteinases and high cross-linking efficiencies. We further provide a proof-of-concept for the usability of the hydrogels in inflammatory skin conditions by employing a drug release set-up simulating inflammatory flare-ups.