Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int Immunol ; 33(3): 171-182, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33038259

RESUMEN

T-cell development depends on the thymic microenvironment, in which endothelial cells (ECs) play a vital role. Interestingly, vascular permeability of the thymic cortex is lower than in other organs, suggesting the existence of a blood-thymus barrier (BTB). On the other hand, blood-borne molecules and dendritic cells bearing self-antigens are accessible to the medulla, facilitating central tolerance induction, and continuous T-precursor immigration and mature thymocyte egress occur through the vessels at the cortico-medullary junction (CMJ). We found that claudin-5 (Cld5), a membrane protein of tight junctions, was expressed in essentially all ECs of the cortical vasculatures, whereas approximately half of the ECs of the medulla and CMJ lacked Cld5 expression. An intravenously (i.v.) injected biotin tracer hardly penetrated cortical Cld5+ vessels, but it leaked into the medullary parenchyma through Cld5- vessels. Cld5 expression in an EC cell line caused a remarkable increase in trans-endothelial resistance in vitro, and the biotin tracer leaked from the cortical vasculatures in Cldn5-/- mice. Furthermore, i.v.-injected sphingosine-1 phosphate distributed selectively into the medulla through the Cld5- vessels, probably ensuring the egress of CD3high mature thymocytes from Cld5- vessels at the CMJ. These results suggest that distinct Cld5 expression profiles in the cortex and medulla may control the BTB and the T-cell gateway to blood circulation, respectively.


Asunto(s)
Permeabilidad Capilar/fisiología , Claudina-5/metabolismo , Linfocitos T/metabolismo , Timo/metabolismo , Uniones Estrechas/fisiología , Animales , Diferenciación Celular/inmunología , Línea Celular , Claudina-5/biosíntesis , Células Endoteliales/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfocitos T/citología , Timocitos/metabolismo
2.
FASEB J ; 35(4): e21354, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749892

RESUMEN

ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.


Asunto(s)
Quimiocina CXCL1/metabolismo , Dermatitis por Contacto/prevención & control , Ácido Eicosapentaenoico/análogos & derivados , Queratinocitos/efectos de los fármacos , Animales , Anticuerpos Monoclonales/efectos de los fármacos , Anticuerpos Monoclonales/metabolismo , Células de la Médula Ósea , Quimiocina CXCL1/genética , Dieta , Dinitrofluorobenceno , Regulación hacia Abajo , Ácido Eicosapentaenoico/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células HaCaT , Humanos , Aceite de Linaza/administración & dosificación , Aceite de Linaza/metabolismo , Ratones
3.
Front Cell Infect Microbiol ; 14: 1355679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841110

RESUMEN

Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo , Ácidos Grasos Omega-3 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Dermatitis por Contacto/metabolismo , Dinitrofluorobenceno , Piel/metabolismo , Piel/patología , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Femenino , Dermatitis Alérgica por Contacto/metabolismo , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Heces/química , Heces/microbiología
4.
Front Mol Biosci ; 10: 1097955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825199

RESUMEN

Retinol is widely used in topical skincare products to ameliorate skin aging and treat acne and wrinkles; however, retinol and its derivatives occasionally have adverse side effects, including the induction of irritant contact dermatitis. Previously, we reported that mead acid (5,8,11-eicosatrienoic acid), an oleic acid metabolite, ameliorated skin inflammation in dinitrofluorobenzene-induced allergic contact hypersensitivity by inhibiting neutrophil infiltration and leukotriene B4 production by neutrophils. Here, we showed that mead acid also suppresses retinol-induced irritant contact dermatitis. In a murine model, we revealed that mead acid inhibited keratinocyte abnormalities such as keratinocyte hyperproliferation. Consistently, mead acid inhibited p38 MAPK (mitogen-activated protein kinase) phosphorylation, which is an essential signaling pathway in the keratinocyte hyperplasia induced by retinol. These inhibitory effects of mead acid were associated with the prevention of both keratinocyte hyperproliferation and the gene expression of neutrophil chemoattractants, including Cxcl1 and Cxcl2, and they were mediated by a PPAR (peroxisome proliferator-activated receptor)-α pathway. Our findings identified the anti-inflammatory effects of mead acid, the use of which can be expected to minimize the risk of adverse side effects associated with topical retinoid application.

5.
Front Immunol ; 14: 1111729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180123

RESUMEN

Macrophages manifest as various subtypes that play diverse and important roles in immunosurveillance and the maintenance of immunological homeostasis in various tissues. Many in vitro studies divide macrophages into two broad groups: M1 macrophages induced by lipopolysaccharide (LPS), and M2 macrophages induced by interleukin 4 (IL-4). However, considering the complex and diverse microenvironment in vivo, the concept of M1 and M2 is not enough to explain diversity of macrophages. In this study, we analyzed the functions of macrophages induced by simultaneous stimulation with LPS and IL-4 (termed LPS/IL-4-induced macrophages). LPS/IL-4-induced macrophages were a homogeneous population showing a mixture of the characteristics of M1 and M2 macrophages. In LPS/IL-4-induced macrophages, expression of cell-surface M1 markers (I-Ab) was higher than in M1 macrophages, but lower expression of iNOS, and expression of M1-associated genes (Tnfα and Il12p40) were decreased in comparison to expression in M1 macrophages. Conversely, expression of the cell-surface M2 marker CD206 was lower on LPS/IL-4-induced macrophages than on M2 macrophages and expression of M2-associated genes (Arg1, Chi3l3, and Fizz1) varied, with Arg1 being greater than, Fizz1 being lower than, and Chi3l3 being comparable to that in M2 macrophages. Glycolysis-dependent phagocytic activity of LPS/IL-4-induced macrophages was strongly enhanced as was that of M1 macrophages; however, the energy metabolism of LPS/IL-4-induced macrophages, such as activation state of glycolytic and oxidative phosphorylation, was quite different from that of M1 or M2 macrophages. These results indicate that the macrophages induced by LPS and IL-4 had unique properties.


Asunto(s)
Interleucina-4 , Lipopolisacáridos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo
6.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013573

RESUMEN

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Asunto(s)
Dieta Alta en Grasa , Macrófagos , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Lípidos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo
7.
Sci Rep ; 11(1): 10426, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001916

RESUMEN

Atherosclerosis is a chronic inflammatory disease associated with macrophage aggregate and transformation into foam cells. In this study, we sought to investigate the impact of dietary intake of ω3 fatty acid on the development of atherosclerosis, and demonstrate the mechanism of action by identifying anti-inflammatory lipid metabolite. Mice were exposed to a high-fat diet (HFD) supplemented with either conventional soybean oil or α-linolenic acid-rich linseed oil. We found that as mice became obese they also showed increased pulsatility and resistive indexes in the common carotid artery. In sharp contrast, the addition of linseed oil to the HFD improved pulsatility and resistive indexes without affecting weight gain. Histological analysis revealed that dietary linseed oil inhibited foam cell formation in the aortic valve. Lipidomic analysis demonstrated a particularly marked increase in the eicosapentaenoic acid-derived metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) in the serum from mice fed with linseed oil. When we gave 12-HEPE to mice with HFD, the pulsatility and resistive indexes was improved. Indeed, 12-HEPE inhibited the foamy transformation of macrophages in a peroxisome proliferator-activated receptor (PPAR)γ-dependent manner. These results demonstrate that the 12-HEPE-PPARγ axis ameliorates the pathogenesis of atherosclerosis by inhibiting foam cell formation.


Asunto(s)
Aterosclerosis/prevención & control , Suplementos Dietéticos , Ácido Eicosapentaenoico/análogos & derivados , Células Espumosas/patología , Obesidad/complicaciones , Animales , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Aterosclerosis/etiología , Diferenciación Celular , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/administración & dosificación , Células Espumosas/metabolismo , Humanos , Aceite de Linaza/administración & dosificación , Aceite de Linaza/química , Masculino , Ratones , Obesidad/dietoterapia , PPAR gamma/metabolismo , Aceite de Soja/administración & dosificación , Aumento de Peso
8.
FASEB Bioadv ; 2(1): 59-71, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32123857

RESUMEN

Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner. These results suggest the new availability of a bacterial enzyme to produce a beneficial lipid mediator, 17(S),18(R)-EpETE, in a stereoselective manner. Our findings highlight that bacterial enzymatic conversion of fatty acid is a promising strategy for mass production of bioactive lipid metabolites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA