Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012415

RESUMEN

A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer) (MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR) and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and electrical properties. The FTIR spectra verify the interactions between the electrolyte components. Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs (CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity of 1.45 × 10-3 S cm-1. Moreover, for other transport parameters, the mobility (µ), number density (n), and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement (TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples (MDLG3) had 3.0 V as the voltage stability of the electrolyte.


Asunto(s)
Glicerol , Plastificantes , Biopolímeros/química , Electrólitos/química , Transporte Iónico , Iones , Litio
2.
Molecules ; 27(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335328

RESUMEN

In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m-3 Kg-1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc's method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.


Asunto(s)
Complejos de Coordinación , Polímeros , Polifenoles , Refractometría ,
3.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164273

RESUMEN

In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10-3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.

4.
Heliyon ; 9(2): e13248, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36825185

RESUMEN

F e S 2 pyrite is one of the most interesting photovoltaic materials with low-cost and natural abundance but with small band gap of 0.95 eV. In the present work, we show the feasibility of increases band gap was determined by Zinc alloying of Iron pyrite. We showed that we can increase the band gap of F e S 2 pyrite to 1.15 e V by theoretical calculation and to 1.16 e V using experimental method, by just adding a very small amount of Zinc ( 1 % ) . We prepared our samples by chemical vapor transport technic and we utilized the technic of linear muffin-tin orbital method in the atomic-sphere approximation (LMTO-ASA). The effect of Zinc alloyed Iron pyrite were examined by transmission electron micrograph TEM, XRD, Raman spectroscopy and optical characterization.

5.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616512

RESUMEN

This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A ↔ D+ = A-) forms across the major backbones of the polymer as a result of alternating donor-acceptor segments contributing to the pull-push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton's short lifetime, only small diffusion distances (10-20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D-A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered.

6.
Membranes (Basel) ; 12(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36005684

RESUMEN

Stable and ionic conducting electrolytes are needed to make supercapacitors more feasible, because liquid electrolytes have leakage problems and easily undergo solvent evaporation. Polymer-based electrolytes meet the criteria, yet they lack good efficiency due to limited segmental motion. Since metal complexes have crosslinking centers that can be coordinated with the polymer segments, they are regarded as an adequate method to improve the performance of the polymer-based electrolytes. To prepare plasticized proton conducting polymer composite (PPC), a simple and successful process was used. Using a solution casting process, methylcellulose and dextran were blended and impregnated with ammonium thiocyanate and zinc metal complex. A range of electrochemical techniques were used to analyze the PPC, including transference number measurement (TNM), linear sweep voltammetry (LSV), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The ionic conductivity of the prepared system was found to be 3.59 × 10-3 S/cm using the EIS method. The use of glycerol plasticizer improves the transport characteristics, according to the findings. The carrier species is found to have ionic mobility of 5.77 × 10-5 cm2 V-1 s-1 and diffusion coefficient of 1.48 × 10-6 cm2 s-1 for the carrier density 3.4 × 1020 cm-3. The TNM revealed that anions and cations were the predominant carriers in electrolyte systems, with an ionic transference value of 0.972. The LSV approach demonstrated that, up to 2.05 V, the film was stable, which is sufficient for energy device applications. The prepared PPC was used to create an electrical double-layer capacitor (EDLC) device. The CV plot exhibited the absence of Faradaic peaks in the CV plot, making it practically have a rectangular form. Using the GCD experiment, the EDLC exhibited low equivalence series resistance of only 65 Ω at the first cycle. The average energy density, power density, and specific capacitance values were determined to be 15 Wh/kg, 350 W/kg, and 128 F/g, respectively.

7.
Materials (Basel) ; 15(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35329595

RESUMEN

In the present article, a simple technique is provided for the fabrication of a polymer electrolyte system composed of polyvinyl chloride (PVC) and doped with varying content of ammonium iodide (NH4I) salt using solution-casting methodology. The influences of NH4I on the structural, electrochemical, and electrical properties of PVC have been investigated using X-ray diffraction, electrochemical impedance spectroscopy (EIS), and dielectric properties. The X-ray study reveals the amorphous nature of the polymer-salt complex. The EIS measurement revealed an ionic conductivity of 5.57 × 10-10 S/cm for the electrolyte containing 10 wt.% of salt. Our hypothesis is provided, which demonstrated the likelihood of designing highly resistive solid electrolytes using the concept of a polymer electrolyte. Here, the results showed that the resistivity of the studied samples is not dramatically decreased with increasing NH4I. Bode plots distinguish the decrease in resistance or impedance with increasing salt contents. Dielectric measurements revealed a decrease in the dielectric constant with the increase of NH4I content in the PVC polymer. The relaxation time and dielectric properties of the electrolytes confirmed their non-Debye type behavior. This pattern has been validated by the existence of an incomplete semicircle in the Argand plot. Insulation materials with low εr have found widespread applications in electronic devices due to the reduction in delay, power dissipation, and crosstalk. In addition, an investigation of real and imaginary parts of electric modulus leads to the minimized electrode polarization being reached.

8.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36433172

RESUMEN

A solution casting method has been utilisedto fabricate plasticisednatural gelatin (NG)-based polymer electrolyte films. The NG electrolyte with 50 wt.% glycerol and 13 wt.% sodium nitrate (NaNO3) attained the highest ionic conductivity of 1.67 × 10-4 S cm-1. Numerous techniques were used to characterisethe NG films to assess their electrochemical performance. The data obtained from impedance spectroscopy for the plasticisedsystem, such as bulk resistance (Rb), arerelatively low. Thiscomprehensive study has been focused on dielectric characteristics and electric modulus parameters. The plasticisedsystem has shown eligibility for practice in energy storage devices with electrochemical strength up to 2.85 V. The TNM data based on ion transference number (tion) and electron transference number (te) determine the identity of the main charge carrier, ion. The redox peaks in the cyclic voltammograms have not been observed as evidence of charge accumulation other than the Faradaic process at the electrode-electrolyte interface. The GCD plot reveals a triangle shape and records arelatively low drop voltage. The high average efficiency of 90% with low ESR has been achieved over 500 cycles, indicating compatibility between electrolyte and electrode. The average power density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.

9.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36236087

RESUMEN

The effect of ethynylene or ethynylene-thiophene spacers on the band gap of alternating polymers, containing 4,9-naphthothiadiazole units as an acceptor and 2,7-linked fluorene repeat units as a donor, were investigated. The Sonogashira coupling reaction was employed to prepare the two novel copolymers, namely ((9,9-dioctyl-fluorene)-2,7-diethynylene-alt-4,9-2,1,3-naphthothiadiazole (PFDENT) and poly(5,5'-(9,9-dioctyl-fluorene-2,7-diyl)bis(ethynyl-2-thienyl)-alt-4,9-(2,1,3-naphthothiadiazole) (PFDTENT). The optical, electrochemical and thermal properties of the two obtained polymers were widely investigated and compared. Both resulting polymers showed low solubility in common organic solvents and moderate molecular weights. It is believed that the introduction of acetylene linkers rather than acetylene-thiophene spacers on the polymer chains reduces the steric hindrance between the donor and acceptor units which leads to the adoption of more planar structures of polymeric chains, resulting in decreased molecular weights of the resulting conjugated polymers. Thus, both ethynylene-based polymers and ethynylene-thiophene-based polymers showed red-shifted absorption maxima compared to their counterpart (thiophene-based polymer), owing to the adoption of more planar structures. Optical studies revealed that the new ethynylene and ethynylene-thiophene-based polymers displayed low band gaps compared to their thiophene analogue polymer PFDTNT. Both resulting polymers showed good thermal stability. X-ray diffraction (XRD) patterns of both polymers revealed that PFDENT and PFDTENT possessed an amorphous nature in solid state.

10.
Materials (Basel) ; 15(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36013716

RESUMEN

The attention to a stable and ionic conductive electrolyte is driven by the limitations of liquid electrolytes, particularly evaporation and leakage, which restrain their widespread use for electrochemical device applications. Solid polymer electrolyte (SPE) is considered to be a potential alternative since it possesses high safety compared to its counterparts. However, it still suffers from low device efficiency due to an incomplete understanding of the mechanism of ion transport parameters. Here, we present a simple in situ solution casting method for the production of polymer-based electrolytes using abundantly available methylcellulose (MC) doped at different weight percentages of potassium thiocyanate (KSCN) salt. Fourier transform infrared (FTIR), and electrochemical impedance spectroscopy (EIS) methods were used to characterize the prepared samples. Based on EIS simulation and FTIR deconvolution associated with the SCN anion peak, various ion transport parameters were determined. The host MC medium and KSCN salt have a strong interaction, which was evident from both peak shifting and intensity alteration of FTIR spectra. From the EIS modeling, desired electric circuits correlated with ion movement and chain polarization were drawn. The highest ionic conductivity of 1.54 × 10-7 S cm-1 is determined from the fitted EIS curve for the film doped with 30 wt.% of KSCN salt. From the FTIR deconvoluted peak, free ions, ions in contact with one another, and ion aggregates were separated. The extracted ion transport parameters from the EIS method and FTIR spectra of the SCN anion band confirm that both increased carrier concentration and their mobility were crucial in improving the overall conductivity of the electrolyte. The dielectric investigations were further used to understand the conductivity of the films. High dielectric constants were observed at low frequencies for all MC:KSCN systems. The dispersion with a high dielectric constant in the low-frequency band is ascribed to the dielectric polarization. The wide shift of M″ peak towards the high frequency was evidenced by the MC-based electrolyte impregnated with 30 wt.% of KSCN salt, revealing the improved ionic movement assisted with chain segmental motion. The AC conductivity pattern was influenced by salt concentration.

11.
Membranes (Basel) ; 12(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323759

RESUMEN

This work presents the fabrication of polymer electrolyte membranes (PEMs) that are made of polyvinyl alcohol-methylcellulose (PVA-MC) doped with various amounts of ammonium iodide (NH4I). The structural and electrical properties of the polymer blend electrolyte were performed via the acquisition of Fourier Transform Infrared (FTIR) and electrical impedance spectroscopy (EIS), respectively. The interaction among the components of the electrolyte was confirmed via the FTIR approach. Electrical impedance spectroscopy (EIS) showed that the whole conductivity of complexes of PVA-MC was increased beyond the addition of NH4I. The application of EEC modeling on experimental data of EIS was helpful to calculate the ion transport parameters and detect the circuit elements of the films. The sample containing 40 wt.% of NH4I salt exhibited maximum ionic conductivity (7.01 × 10-8) S cm-1 at room temperature. The conductivity behaviors were further emphasized from the dielectric study. The dielectric constant, ε' and loss, ε'' values were recorded at high values within the low-frequency region. The peak appearance of the dielectric relaxation analysis verified the non-Debye type of relaxation mechanism was clarified via the peak appearance of the dielectric relaxation. For further confirmation, the transference number measurement (TNM) of the PVA-MC-NH4I electrolyte was analyzed in which ions were primarily entities for the charge transfer process. The linear sweep voltammetry (LSV) shows a relatively electrochemically stable electrolyte where the voltage was swept linearly up to 1.6 V. Finally, the sample with maximum conductivity, ion dominance of tion and relatively wide breakdown voltage were found to be 0.88 and 1.6 V, respectively. As the ions are the majority charge carrier, this polymer electrolyte could be considered as a promising candidate to be used in electrochemical energy storage devices for example electrochemical double-layer capacitor (EDLC) device.

12.
Membranes (Basel) ; 12(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35207061

RESUMEN

A solution cast technique was utilized to create a plasticized biopolymer-based electrolyte system. The system was prepared from methylcellulose (MC) polymer as the hosting material and potassium iodide (KI) salt as the ionic source. The electrolyte produced with sufficient conductivity was evaluated in an electrochemical double-layer capacitor (EDLC). Electrolyte systems' electrical, structural, and electrochemical properties have been examined using various electrochemical and FTIR spectroscopic techniques. From the electrochemical impedance spectroscopy (EIS), a maximum ionic conductivity of 5.14 × 10-4 S cm-1 for the system with 50% plasticizer was recorded. From the EEC modeling, the ion transport parameters were evaluated. The extent of interaction between the components of the prepared electrolyte was investigated using Fourier transformed infrared spectroscopy (FTIR). For the electrolyte system (MC-KI-glycerol), the tion and electrochemical windows were 0.964 and 2.2 V, respectively. Another electrochemical property of electrolytes is transference number measurement (TNM), in which the ion predominantly responsibility was examined in an attempt to track the transport mechanism. The non-Faradaic nature of charge storing was proved from the absence of a redox peak in the cyclic voltammetry profile (CV). Several decisive parameters have been specified, such as specific capacitance (Cs), coulombic efficiency (η), energy density (Ed), and power density (Pd) at the first cycle, which were 68 F g-1, 67%, 7.88 Wh kg-1, and 1360 Wh kg-1, respectively. Ultimately, during the 400th cycle, the series resistance ESR varied from 70 to 310 ohms.

13.
IEEE Trans Nanobioscience ; 20(1): 35-41, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32894719

RESUMEN

Eukaryotic initiation factor 2 (eIF2) plays a fundamental role in the regulation of protein synthesis. Investigations have revealed that the regulation of eIF2 is robust against intrinsic uncertainties and is able to efficiently counteract them. The robustness properties of the eIF2 pathway against intrinsic disturbances is also well known. However the reasons for this ability to counteract stresses is less well understood. In this article, the robustness conferring properties of the eIF2 dependent regulatory system is explored with the help of a mathematical model. The novelty of the work presented in this article lies in articulating the possible reason behind the inbuilt robustness of the highly engineered eIF2 system against intrinsic perturbations. Our investigations reveal that the robust nature of the eIF2 pathway may originate from the existence of an attractive natural sliding surface within the system satisfying reaching and sliding conditions that are well established in the domain of control engineering.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Biosíntesis de Proteínas , Factor 2 Eucariótico de Iniciación/metabolismo , Fosforilación
14.
Membranes (Basel) ; 11(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920053

RESUMEN

The current work shows the preparation of plasticized chitosan-magnesium acetate Mg(CH3COO)2-based polymer electrolyte dispersed with nickel (Ni) metal complexes via solution casting. Investigations of electrical and electrochemical properties of the prepared polymer composite electrolyte were carried out. The structural and optical properties of the samples were studied using X-ray diffraction (XRD) and UV-Vis spectroscopy techniques. The structural and optical outcomes revealed a clear enhancement in both absorbance and amorphous nature of the samples upon the addition of Ni metal complexes. Through the simulation of impedance data, various ion transport parameters were calculated. The electrochemical performance of the sample was examined by means of transference number measurement (TNM), linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements. The TNM analysis confirmed the dominance of ions as the main charge carrier in the electrolyte with tion of (0.96) compared to only (0.04) for tel. The present electrolyte was stable in the range of 0 V to 2.4 V, which was obtained from linear sweep voltammetry (LSV). A result from CV proved that the electrical double-layer capacitor (EDLC) has a capacitive behavior as no redox peaks could be observed. The presence of Ni improved the charge-discharge cycle of the EDLC due to its amorphous behavior. The average performances of the EDLC were recorded as 41.7 F/g, 95%, 5.86 Wh/kg and 628 W/kg for specific capacitance, coulombic efficiency, energy and power densities, respectively. The fabricated EDLC device was found to be stable up to 1000 cycles.

15.
Polymers (Basel) ; 13(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069445

RESUMEN

In this work, a green approach was implemented to prepare polymer composites using polyvinyl alcohol polymer and the extract of black tea leaves (polyphenols) in a complex form with Co2+ ions. A range of techniques was used to characterize the Co2+ complex and polymer composite, such as Ultraviolet-visible (UV-Visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The optical parameters of absorption edge, refractive index (n), dielectric properties including real and imaginary parts (εr, and εi) were also investigated. The FRIR and XRD spectra were used to examine the compatibility between the PVA polymer and Co2+-polyphenol complex. The extent of interaction was evidenced from the shifts and change in the intensity of the peaks. The relatively wide amorphous phase in PVA polymer increased upon insertion of the Co2+-polyphenol complex. The amorphous character of the Co2+ complex was emphasized with the appearance of a hump in the XRD pattern. From UV-Visible spectroscopy, the optical properties, such as absorption edge, refractive index (n), (εr), (εi), and bandgap energy (Eg) of parent PVA and composite films were specified. The Eg of PVA was lowered from 5.8 to 1.82 eV upon addition of 45 mL of Co2+-polyphenol complex. The N/m* was calculated from the optical dielectric function. Ultimately, various types of electronic transitions within the polymer composites were specified using Tauc's method. The direct bandgap (DBG) treatment of polymer composites with a developed amorphous phase is fundamental for commercialization in optoelectronic devices.

16.
Polymers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34685244

RESUMEN

In this research, direct band gap polymer composites with amorphous phase, which are imperative for optoelectronic devices applications were synthesized. The solution cast technique was used to produce polyethylene oxide (PEO)/calcium titanate (CaTiO3) nanocomposite (NC) films. The X-ray diffraction (XRD) confirms the growth of amorphous nature within PEO with CaTiO3 addition. The optical band gaps of pure PEO and PEO/CaTiO3 NC films were calculated using analysis of ultraviolet-visible (UV-Vis) spectra. The change in absorption edge toward lower photon energy is evidence of polymer modification. The dispersion behavior of the refractive index of PEO was manipulated to a higher wavelength upon doping with CaTiO3. Upon adding CaTiO3 to the pure PEO polymer, the dielectric constant and refractive index were considerably modified. The band gap shifts from 4.90 eV to 4.19 eV for the PEO incorporated with an optimum portion of 8 wt. % of CaTiO3. The types of the electronic transition in composite samples were specified, based on the Taucs model and the optical dielectric loss. The alteration of UV/Vis absorption spectra of the NC film was considered a suitable candidate to be applied in nanotechnology-based devices. The spherulites ascribed to the crystalline phase were distinguished through the optical microscopy (OM) study.

17.
Polymers (Basel) ; 13(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685361

RESUMEN

The preparation of a dextran (Dex)-hydroxyethyl cellulose (HEC) blend impregnated with ammonium bromide (NH4Br) is done via the solution cast method. The phases due to crystalline and amorphous regions were separated and used to estimate the degree of crystallinity. The most amorphous blend was discovered to be a blend of 40 wt% Dex and 60 wt% HEC. This polymer blend serves as the channel for ions to be conducted and electrodes separator. The conductivity has been optimized at (1.47 ± 0.12) × 10-4 S cm-1 with 20 wt% NH4Br. The EIS plots were fitted with EEC circuits. The DC conductivity against 1000/T follows the Arrhenius model. The highest conducting electrolyte possesses an ionic number density and mobility of 1.58 × 1021 cm-3 and 6.27 × 10-7 V-1s-1 cm2, respectively. The TNM and LSV investigations were carried out on the highest conducting system. A non-Faradic behavior was predicted from the CV pattern. The fabricated electrical double layer capacitor (EDLC) achieved 8000 cycles, with a specific capacitance, internal resistance, energy density, and power density of 31.7 F g-1, 80 Ω, 3.18 Wh kg-1, and 922.22 W kg-1, respectively.

18.
Materials (Basel) ; 14(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923484

RESUMEN

This report shows a simple solution cast methodology to prepare plasticized polyvinyl alcohol (PVA)/methylcellulose (MC)-ammonium iodide (NH4I) electrolyte at room temperature. The maximum conducting membrane has a conductivity of 3.21 × 10-3 S/cm. It is shown that the number density, mobility and diffusion coefficient of ions are enhanced by increasing the glycerol. A number of electric and electrochemical properties of the electrolyte-impedance, dielectric properties, transference numbers, potential window, energy density, specific capacitance (Cs) and power density-were determined. From the determined electric and electrochemical properties, it is shown that PVA: MC-NH4I proton conducting polymer electrolyte (PE) is adequate for utilization in energy storage device (ESD). The decrease of charge transfer resistance with increasing plasticizer was observed from Bode plot. The analysis of dielectric properties has indicated that the plasticizer is a novel approach to increase the number of charge carriers. The electron and ion transference numbers were found. From the linear sweep voltammetry (LSV) response, the breakdown voltage of the electrolyte is determined. From Galvanostatic charge-discharge (GCD) measurement, the calculated Cs values are found to drop with increasing the number of cycles. The increment of internal resistance is shown by equivalent series resistance (ESR) plot. The energy and power density were studied over 250 cycles that results to the value of 5.38-3.59 Wh/kg and 757.58-347.22 W/kg, respectively.

19.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923856

RESUMEN

The influence of dispersing Al-metal complex on the optical properties of PVA was investigated using UV-visible spectroscopy. Polymer composite films with various Al3+-complex amounts in the PVA matrix were arranged by solution casting technique by means of distilled water as a widespread solvent. The formation of Al3+-metal complex was verified through Ultraviolet-visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) examinations. The addition of Al-complex into the polymer matrix led to the recovery of the optical parameters such as dielectric constant (εr and εi) and refractive index (n). The variations of real and imaginary parts of complex dielectric constant as a function of photon wavelength were studied to calculate localized charge density values (N/m*), high-frequency dielectric constant, relaxation time, optical mobility, optical resistivity, and plasma angular frequency (ωp) of electrons. In proportion with Al3+-complex content, the N/m* values were amplified from 3.68 × 1055 kg-1 m-3 to 109 × 1055 kg-1 m-3. The study of optical parameters may find applications within optical instrument manufacturing. The optical band gap was determined from Tauc's equation, and the type of electronic transition was specified. A remarkable drop in the optical band gap was observed. The dispersion of static refractive index (no) of the prepared composites was analyzed using the theoretical Wemple-DiDomenico single oscillator model. The average oscillator energy (Eo) and oscillator dispersion energy (Ed) parameters were estimated.

20.
Materials (Basel) ; 14(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806999

RESUMEN

In the current study, polymer nanocomposites (NCPs) based on poly (vinyl alcohol) (PVA) with altered refractive index and absorption edge were synthesized by means of a solution cast technique. The characterization techniques of UV-Vis spectroscopy and XRD were used to inspect the structural and optical properties of the prepared films. The XRD patterns of the doped samples have shown clear amendments in the structural properties of the PVA host polymer. Various optical parameters were studied to get more insights about the influence of CeO2 on optical properties of PVA. On the insertion of CeO2 nanoparticles (NPs) into the PVA matrix, the absorption edge was found to move to reduced photon energy sides. It was concluded that the CeO2 nanoparticles can be used to tune the refractive index (n) of the host polymer, and it reached up to 1.93 for 7 wt.% of CeO2 content. A detailed study of the bandgap (BG) was conducted using two approaches. The outcomes have confirmed the impact of the nanofiller on the BG reduction of the host polymer. The results of the optical BG study highlighted that it is crucial to address the ε" parameter during the BG analysis, and it is considered as a useful tool to specify the type of electronic transitions. Finally, the dispersion region of n is conferred in terms of the Wemple-DiDomenico single oscillator model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA