Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Dev ; 31(18): 1910-1925, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021239

RESUMEN

Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states.


Asunto(s)
Encéfalo/embriología , Adhesión Celular/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Células-Madre Neurales/metabolismo , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo/fisiología , Animales , Comunicación Celular , Regulación hacia Abajo , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Neurogénesis/genética , Neurogénesis/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal
2.
J Biol Chem ; 296: 100409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33581109

RESUMEN

Microprocessor complex, including DiGeorge syndrome critical region gene 8 (DGCR8) and DROSHA, recognizes and cleaves primary transcripts of microRNAs (pri-miRNAs) in the maturation of canonical miRNAs. The study of DGCR8 haploinsufficiency reveals that the efficiency of this activity varies for different miRNA species. It is thought that this variation might be associated with the risk of schizophrenia with 22q11 deletion syndrome caused by disruption of the DGCR8 gene. However, the underlying mechanism for varying action of DGCR8 with each miRNA remains largely unknown. Here, we used in vivo monitoring to measure the efficiency of DGCR8-dependent microprocessor activity in cultured cells. We confirmed that this system recapitulates the microprocessor activity of endogenous pri-miRNA with expression of a ratiometric fluorescence reporter. Using this system, we detected mir-9-2 as one of the most efficient targets. We also identified a novel DGCR8-responsive RNA element, which is highly conserved among mammalian species and could be regulated at the epi-transcriptome (RNA modification) level. This unique feature between DGCR8 and pri-miR-9-2 processing may suggest a link to the risk of schizophrenia.


Asunto(s)
MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular , Línea Celular Tumoral , Haploinsuficiencia/genética , Humanos , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Esquizofrenia/genética
3.
Neurobiol Dis ; 155: 105364, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857636

RESUMEN

Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Redes Reguladoras de Genes/fisiología , Células Madre Pluripotentes Inducidas/fisiología , MicroARNs/genética , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Teorema de Bayes , Línea Celular Tumoral , Daño del ADN/fisiología , Técnicas de Inactivación de Genes/métodos , Humanos , MicroARNs/biosíntesis , Proteína FUS de Unión a ARN/biosíntesis
4.
Biochem Biophys Res Commun ; 566: 24-29, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34111668

RESUMEN

Ferroptosis was recently defined as a novel type of programmed cell death depending on iron and lipid peroxidation. It is biologically different from other types of cell death such as apoptosis. While the involvement of ferroptosis in cancer, patient and animal model have been intensely studied, ferroptosis in human motor neuron model is still clearly unknown. Here we carefully assessed ferroptosis using human iPS cell-derived motor neuron (hiMNs). We found that almost all hiMNs died by the treatment of glutathione peroxidase 4 (GPX4) inhibitors. Importantly, the cell death was rescued by one antioxidant, vitamin E acetate, iron chelators and lipid peroxidase inhibitors with high dynamic ranges. Finally, these data clearly indicated that ferroptosis constitutively occurs in hiMNs, suggesting the possibility that it might play a biologically and pathologically important roles in motor neuron death such as motor neuron disease (MND)/Amyotrophic lateral sclerosis (ALS).


Asunto(s)
Muerte Celular , Ferroptosis , Neuronas Motoras/citología , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Inhibidores Enzimáticos/farmacología , Ferroptosis/efectos de los fármacos , Humanos , Neuronas Motoras/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores
5.
Biochem Biophys Res Commun ; 523(3): 795-801, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31954521

RESUMEN

The DEAD-box family of RNA helicases plays essential roles in both transcriptional and translational mRNA degradation; they unwind short double-stranded RNA by breaking the RNA-RNA interactions. Two DEAD-box RNA helicases, eukaryotic translation initiation factor 4A3 (eIF4A3) and DEAD-box helicase 3 (DDX3X), show high homology in the ATP-binding region and are considered key molecules for cancer progression. Several small molecules that target eIF4A3 and DDX3X have been reported to inhibit cancer cell growth; however, more potent compounds are required for cancer therapeutics, and there is a critical need for high-throughput assays to screen for RNA helicase inhibitors. In this study, we developed novel fluorescence resonance energy transfer-based high-throughput RNA helicase assays for eIF4A3 and DDX3X. Using these assays, we identified several eIF4A3 allosteric inhibitors whose inhibitory effect on eIF4A3 ATPase showed a strong correlation with inhibitory effect on helicase activity. From 102 compounds that exhibited eIF4A3 ATPase inhibition, we identified a selective DDX3X inhibitor, C1, which showed stronger inhibition of DDX3X than of eIF4A3. Small-molecule helicase inhibitors can be valuable for clarifying the molecular machinery of DEAD-box RNA helicases. The high-throughput quantitative assays established here should facilitate the evaluation of the helicase inhibitory activity of compounds.


Asunto(s)
ARN Helicasas DEAD-box/antagonistas & inhibidores , Factor 4A Eucariótico de Iniciación/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , ARN Helicasas DEAD-box/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Enzimas/métodos , Factor 4A Eucariótico de Iniciación/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Bibliotecas de Moléculas Pequeñas/química
6.
Biochem Biophys Res Commun ; 493(1): 800-806, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28843857

RESUMEN

Hepatocellular carcinoma (HCC) is still one of the major causes of cancer-related death. Kinetochore-associated protein 2 (KNTC2) is specifically upregulated in tumor tissues of HCC patients and recognized as a potential candidate target for the treatment of HCC. However, the relationship between KNTC2 and in vivo tumor growth of HCC is not yet fully understood. Here we encapsulated KNTC2 siRNAs into a lipid nanoparticle (LNP) and investigated their knockdown activity, target engagement marker, anti-tumor activity and hepatotoxicity in an orthotopic HCC model mice of Hep3B-luc cells. Single i.v. administration of KNTC2 siRNA-LNP specifically suppressed the expression levels of both human KNTC2 mRNA and mouse Kntc2 mRNA in tumor tissues. Phosphorylation levels of histone H3 (HH3) at serine 10 in tumor tissues were increased by KNTC2 siRNA-LNP. Repeated administration of KNTC2 siRNA-LNP (twice a week) specifically inhibited the growth of tumor tissues without increasing the plasma AST and ALT levels. Their growth inhibitory activities were consistent with knockdown activities. These data strongly indicated that KNTC2 is a promising target for the treatment of HCC and that phosphorylated HH3 at serine 10 is one of the target engagement markers for KNTC2.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Terapia Genética/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Proteínas Nucleares/genética , ARN Interferente Pequeño/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas del Citoesqueleto , Técnicas de Silenciamiento del Gen/métodos , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones SCID , Terapia Molecular Dirigida/métodos , Resultado del Tratamiento
7.
Cells ; 12(4)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831320

RESUMEN

While the suprachiasmatic nucleus (SCN) coordinates many daily rhythms, some circadian patterns of expression are controlled by SCN-independent systems. These include responses to daily methamphetamine (MAP) injections. Scheduled daily injections of MAP resulted in anticipatory activity, with an increase in locomotor activity immediately prior to the time of injection. The MAP-induced anticipatory behavior is associated with the induction and a phase advance in the expression rhythm of the clock gene Period1 (Per1). However, this unique formation mechanism of MAP-induced anticipatory behavior is not well understood. We recently developed a micro-photomultiplier tube (micro-PMT) system to detect a small amount of Per1 expression. In the present study, we used this system to measure the formation kinetics of MAP-induced anticipatory activity in a single whisker hair to reveal the underlying mechanism. Our results suggest that whisker hairs respond to daily MAP administration, and that Per1 expression is affected. We also found that elevated Per1 expression in a single whisker hair is associated with the occurrence of anticipatory behavior rhythm. The present results suggest that elevated Per1 expression in hairs might be a marker of anticipatory behavior formation.


Asunto(s)
Metanfetamina , Metanfetamina/metabolismo , Metanfetamina/farmacología , Núcleo Supraquiasmático/metabolismo , Actividad Motora , Ritmo Circadiano/genética
8.
Cancer Immunol Immunother ; 61(12): 2311-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22707303

RESUMEN

Many cancer-testis antigen genes have been identified; however, few human leukocyte antigen (HLA)-A24-restricted cytotoxic T cell (CTL) epitope peptides are available for clinical immunotherapy. To solve this problem, novel tools increasing the efficacy and accuracy of CTL epitope detection are needed. In the present study, we utilized a highly active dendritic cell (DC)-culture method and an in silico HLA-A24 peptide-docking simulation assay to identify novel CTL epitopes from MAGE-A6 and MAGE-A12 antigens. The highly active DCs, called α-type-1 DCs, were prepared using a combination of maturation reagents to produce a large amount of interleukin-12. Meanwhile, our HLA-A24 peptide-docking simulation assay was previously demonstrated to have an obvious advantage of accuracy over the conventional prediction tool, bioinformatics and molecular analysis section. For CTL induction assays, peripheral blood mononuclear cells derived from six cases of HLA-A24(+) melanoma were used. Through CTL induction against melanoma cell lines and peptide-docking simulation assays, two peptides (IFGDPKKLL from MAGE-A6 and IFSKASEYL from MAGE-A12) were identified as novel CTL epitope candidates. Finally, we verified that the combination of the highly active DC-culture method and HLA-A24 peptide-docking simulation assay might be tools for predicting CTL epitopes against cancer antigens.


Asunto(s)
Antígenos de Neoplasias/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A24/inmunología , Proteínas de Neoplasias/inmunología , Péptidos/inmunología , Linfocitos T Citotóxicos/inmunología , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Epítopos de Linfocito T/metabolismo , Femenino , Antígeno HLA-A24/metabolismo , Humanos , Interleucina-12/inmunología , Interleucina-12/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Melanocitos/inmunología , Melanocitos/metabolismo , Melanoma/inmunología , Melanoma/metabolismo , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Linfocitos T Citotóxicos/metabolismo
9.
Front Mol Neurosci ; 15: 953365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36606141

RESUMEN

Fused in sarcoma/translated in liposarcoma (FUS) is an RNA-binding protein, and its mutations are associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), through the DNA damage stress response, aberrant stress granule (SG) formation, etc. We previously reported that translocation of endogenous FUS into SGs was achieved by cotreatment with a DNA double-strand break inducer and an inhibitor of DNA-PK activity. In the present study, we investigated cytoplasmic SG formation using various fluorescent protein-tagged mutant FUS proteins in a human astrocytoma cell (U251) model. While the synergistic enhancement of the migration of fluorescent protein-tagged wild-type FUS to cytoplasmic SGs upon DNA damage induction was observed when DNA-PK activity was suppressed, the fluorescent protein-tagged FUSP525L mutant showed cytoplasmic localization. It migrated to cytoplasmic SGs upon DNA damage induction alone, and DNA-PK inhibition also showed a synergistic effect. Furthermore, analysis of 12 sites of DNA-PK-regulated phosphorylation in the N-terminal LC region of FUS revealed that hyperphosphorylation of FUS mitigated the mislocalization of FUS into cytoplasmic SGs. By using this cell model, we performed screening of a compound library to identify compounds that inhibit the migration of FUS to cytoplasmic SGs but do not affect the localization of the SG marker molecule G3BP1 to cytoplasmic SGs. Finally, we successfully identified 23 compounds that inhibit FUS-containing SG formation without changing normal SG formation. Highlights Characterization of DNA-PK-dependent FUS stress granule localization.A compound library was screened to identify compounds that inhibit the formation of FUS-containing stress granules.

10.
Nat Cell Biol ; 6(8): 784-91, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15247924

RESUMEN

RNA interference is an evolutionarily conserved gene-silencing pathway in which the nuclease Dicer cleaves double-stranded RNA into small interfering RNAs. The biological function of the RNAi-related pathway in vertebrate cells is not fully understood. Here, we report the generation of a conditional loss-of-function Dicer mutant in a chicken-human hybrid DT40 cell line that contains human chromosome 21. We show that loss of Dicer results in cell death with the accumulation of abnormal mitotic cells that show premature sister chromatid separation. Aberrant accumulation of transcripts from alpha-satellite sequences, which consist of human centromeric repeat DNAs, was detected in Dicer-deficient cells. Immunocytochemical analysis revealed abnormalities in the localization of two heterochromatin proteins, Rad21 cohesin protein and BubR1 checkpoint protein, but the localization of core kinetochore proteins such as centromere protein (CENP)-A and -C was normal. We conclude that Dicer-related RNA interference machinery is involved in the formation of the heterochromatin structure in higher vertebrate cells.


Asunto(s)
Endorribonucleasas/genética , Endorribonucleasas/fisiología , Heterocromatina/química , Heterocromatina/metabolismo , Animales , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , Línea Celular , Supervivencia Celular , Centrómero/química , Pollos , Cromosomas Humanos Par 21 , Proteínas de Unión al ADN , Endorribonucleasas/deficiencia , Silenciador del Gen , Heterocromatina/genética , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Interferencia de ARN , Mapeo Restrictivo , Transgenes
11.
EBioMedicine ; 45: 362-378, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262712

RESUMEN

BACKGROUND: The characteristic structure of motor neurons (MNs), particularly of the long axons, becomes damaged in the early stages of amyotrophic lateral sclerosis (ALS). However, the molecular pathophysiology of axonal degeneration remains to be fully elucidated. METHOD: Two sets of isogenic human-induced pluripotent stem cell (hiPSCs)-derived MNs possessing the single amino acid difference (p.H517D) in the fused in sarcoma (FUS) were constructed. By combining MN reporter lentivirus, MN specific phenotype was analyzed. Moreover, RNA profiling of isolated axons were conducted by applying the microfluidic devices that enable axon bundles to be produced for omics analysis. The relationship between the target gene, which was identified as a pathological candidate in ALS with RNA-sequencing, and the MN phenotype was confirmed by intervention with si-RNA or overexpression to hiPSCs-derived MNs and even in vivo. The commonality was further confirmed with other ALS-causative mutant hiPSCs-derived MNs and human pathology. FINDINGS: We identified aberrant increasing of axon branchings in FUS-mutant hiPSCs-derived MN axons compared with isogenic controls as a novel phenotype. We identified increased level of Fos-B mRNA, the binding target of FUS, in FUS-mutant MNs. While Fos-B reduction using si-RNA or an inhibitor ameliorated the observed aberrant axon branching, Fos-B overexpression resulted in aberrant axon branching even in vivo. The commonality of those phenotypes was further confirmed with other ALS causative mutation than FUS. INTERPRETATION: Analyzing the axonal fraction of hiPSC-derived MNs using microfluidic devices revealed that Fos-B is a key regulator of FUS-mutant axon branching. FUND: Japan Agency for Medical Research and development; Japanese Ministry of Education, Culture, Sports, Science and Technology Clinical Research, Innovation and Education Center, Tohoku University Hospital; Japan Intractable Diseases (Nanbyo) Research Foundation; the Kanae Foundation for the Promotion of Medical Science; and "Inochi-no-Iro" ALS research grant.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/metabolismo , Axones/patología , Diferenciación Celular/genética , Línea Celular , Edición Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , Neuronas Motoras/metabolismo , Mutación , Neurogénesis/genética , Fenotipo , ARN Interferente Pequeño/genética
12.
FEBS Lett ; 536(1-3): 71-6, 2003 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-12586341

RESUMEN

Stimulation of the epidermal growth factor receptor (EGFR) produces membrane ruffles through the small G protein Rac1; however, the signaling pathway from EGFR to Rac1 has not yet been clarified. Here, we show that autophosphorylation of EGFR at tyrosine 992 is required for EGF-induced membrane ruffle formation in CHO cells. Signaling from the autophosphorylated tyrosine 992 appears to be mediated by phospholipase C (PLC) gamma 1. Furthermore, activation of Rac1 by EGF is inhibited by a PLC inhibitor. These results, taken together, suggest that autophosphorylation of EGFR at tyrosine 992 and the subsequent PLC gamma 1 activation transduce the signal to Rac1 to induce membrane ruffle formation.


Asunto(s)
Membrana Celular/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Fosfolipasas de Tipo C/metabolismo , Tirosina/metabolismo , Animales , Células CHO , Membrana Celular/enzimología , Membrana Celular/ultraestructura , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Cricetinae , Factor de Crecimiento Epidérmico/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfolipasa C gamma , Fosforilación , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
13.
Mar Biotechnol (NY) ; 4(2): 173-8, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14961277

RESUMEN

Medaka (Oryzias latipes) has many advantages for genetic and developmental studies. With recent advances in the genome analyses of other species, rapid accumulation of resources for medaka genomics is expected. In this study, we generated an arrayed medaka cosmid library from the HNI inbred strain, carrying a 40-kb insert on average. The library consists of approximately 120,000 clones with a 6-fold genomic coverage. Cosmid clones can be screened within 2 days using standard polymerase chain reaction. Considering the advantage of the cosmid insert size and the compact genome size of the medaka, this library provides a powerful tool for future genome analyses.

14.
Biomed Res ; 35(2): 105-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24759178

RESUMEN

Of all potential biological therapeutics, monoclonal antibody (mAb)-based therapies are becoming the dominant focus of clinical research. In particular, smaller recombinant antibody fragments such as single-chain variable fragments (scFv) have become the subject of intense focus. However, an efficient affinity ligand for antibody fragment purification has not been developed. In the present study, we designed a consensus sequence for the human antibody heavy or light chain-variable regions (Fv) based on the antibody sequences available in the ImMunoGeneTics information system (IMGT), and synthesized these consensus sequences as template Fv antibodies. We then screened peptide ligands that specifically bind to the repertoire-derived human Fv consensus antibody using a 12-mer-peptide library expressed-phage display method. Subsequently, 1 peptide for the VH template and 8 peptides for the VK template were selected as the candidate ligands after 4 rounds of panning the phage display. Using peptide-bead-based immunoprecipitation, the code-4 and code-13 peptides showed recovery rates of the VH and VK templates that were 20-30% and 40-50%, respectively. Both peptides exhibited better recovery rates for trastuzumab scFv (approximately 40%). If it were possible to identify the best combination of VH and VK-binding peptides among the ligand peptides suitable for the human mAb Fv sequence, the result could be a promising purification tool that might greatly improve the cost efficiencies of the purification process.


Asunto(s)
Anticuerpos Monoclonales/genética , Región Variable de Inmunoglobulina/genética , Ligandos , Péptidos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Humanos , Región Variable de Inmunoglobulina/química , Inmunoprecipitación , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Unión Proteica/inmunología , Proteínas Recombinantes de Fusión , Alineación de Secuencia , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
15.
Oncol Rep ; 31(4): 1683-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24573400

RESUMEN

Glioblastoma multiforme (GBM) is one of the most malignant and aggressive tumors, and has a very poor prognosis with a mean survival time of <2 years, despite intensive treatment using chemo-radiation. Therefore, novel therapeutic approaches including immunotherapy have been developed against GBM. For the purpose of identifying novel target antigens contributing to GBM treatment, we developed 17 primary glioma cell lines derived from high-grade glioma patients, and analyzed the expression of various tumor antigens and glioma-associated markers using a quantitative PCR and immunohistochemistry (IHC). A quantitative PCR using 54 cancer-testis (CT) antigen-specific primers showed that 36 CT antigens were positive in at least 1 of 17 serum-derived cell lines, and 17 antigens were positive in >50% cell lines. Impressively, 6 genes (BAGE, MAGE-A12, CASC5, CTAGE1, DDX43 and IL-13RA2) were detected in all cell lines. The expression of other 13 glioma-associated antigens than CT genes were also investigated, and 10 genes were detected in >70% cell lines. The expression of CT antigen and glioma-associated antigen genes with a high frequency were also verified in IHC analysis. Moreover, a relationship of antigen gene expressions with a high frequency to overall survival was investigated using the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database of the National Cancer Institute, and expression of 6 genes including IL-13RA2 was inversely correlated to overall survival time. Furthermore, 4 genes including DDX43, TDRD1, HER2 and gp100 were identified as MGMT-relevant factors. In the present study, several CT antigen including novel genes were detected in high-grade glioma primary cell lines, which might contribute to developing novel immunotherapy and glioma-specific biomarkers in future.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Antígenos de Neoplasias/análisis , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Femenino , Glioma/mortalidad , Glioma/patología , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Int J Oncol ; 43(1): 219-27, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23612755

RESUMEN

Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in combination with temozolomide plus radiation therapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Neoplásicas/patología , Oxadiazoles/administración & dosificación , Quinolinas/administración & dosificación , Factor de Transcripción STAT3/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Factor 4 Similar a Kruppel , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismo , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA