Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 31(44): 15983-95, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049441

RESUMEN

There is intense interest in developing methods to regulate proliferation and differentiation of stem cells into neuronal fates for the purposes of regenerative medicine. One way to do this is through in vivo pharmacological engineering using small molecules. However, a key challenge is identification of relevant signaling pathways and therein druggable targets to manipulate stem cell behavior efficiently in vivo. Here, we use the planarian flatworm as a simple chemical-genetic screening model for nervous system regeneration to show that the isoquinoline drug praziquantel (PZQ) acts as a small molecule neurogenic to produce two-headed animals with integrated CNSs following regeneration. Characterization of the entire family of planarian voltage-operated Ca(2+) channel α subunits (Ca(v)α), followed by in vivo RNAi of specific Ca(v) subunits, revealed that PZQ subverted regeneration by activation of a specific voltage-gated Ca(2+) channel isoform (Ca(v)1A). PZQ-evoked Ca(2+) entry via Ca(v)1A served to inhibit neuronally derived Hedgehog signals, as evidenced by data showing that RNAi of Ca(v)1A prevented PZQ-evoked bipolarity, Ca(2+) entry, and decreases in wnt1 and wnt11-5 levels. Surprisingly, the action of PZQ was opposed by Ca(2+) influx through a closely related neuronal Ca(v) isoform (Ca(v)1B), establishing a novel interplay between specific Ca(v)1 channel isoforms, Ca(2+) entry, and neuronal Hedgehog signaling. These data map PZQ efficacy to specific neuronal Ca(v) complexes in vivo and underscore that both activators (Ca(v)1A) and inhibitors (Ca(v)1B) of Ca(2+) influx can act as small molecule neurogenics in vivo on account of the unique coupling of Ca(2+) channels to neuronally derived polarity cues.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Antihelmínticos/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Canales de Calcio Tipo L/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuronas/efectos de los fármacos , Planarias , Praziquantel/farmacología , Interferencia de ARN/fisiología , Alineación de Secuencia/métodos , Transducción de Señal/genética , Proteína Wnt1/metabolismo , beta Catenina/genética
2.
Biochem J ; 404(3): 383-91, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17338679

RESUMEN

Studies in the Xenopus model system have provided considerable insight into the developmental role of intracellular Ca2+ signals produced by activation of IP3Rs (inositol 1,4,5-trisphosphate receptors). However, unlike mammalian systems where three IP3R subtypes have been well characterized, our molecular understanding of the IP3Rs that underpin Ca2+ signalling during Xenopus embryogenesis relate solely to the original characterization of the 'Xenopus IP3R' cloned and purified from Xenopus laevis oocytes several years ago. In the present study, we have identified Xenopus type 2 and type 3 IP3Rs and report the full-length sequence, genomic architecture and developmental expression profile of these additional IP3R subtypes. In the light of the emerging genomic resources and opportunities for genetic manipulation in the diploid frog Xenopus tropicalis, these data will facilitate manipulations to resolve the contribution of IP3R diversity in Ca2+ signalling events observed during vertebrate development.


Asunto(s)
Señalización del Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Evolución Molecular , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/clasificación , Receptores de Inositol 1,4,5-Trifosfato/genética , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus/genética
3.
PLoS One ; 7(12): e51442, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251535

RESUMEN

Recently, the EB1 and XMAP215/TOG families of microtubule binding proteins have been demonstrated to bind autonomously to the growing plus ends of microtubules and regulate their behaviour in in vitro systems. However, their functional redundancy or difference in cells remains obscure. Here, we compared the nanoscale distributions of EB1 and ch-TOG along microtubules using high-resolution microscopy techniques, and also their roles in microtubule organisation in interphase HeLa cells. The ch-TOG accumulation sites protruded ∼100 nm from the EB1 comets. Overexpression experiments showed that ch-TOG and EB1 did not interfere with each other's localisation, confirming that they recognise distinct regions at the ends of microtubules. While both EB1 and ch-TOG showed similar effects on microtubule plus end dynamics and additively increased microtubule dynamicity, only EB1 exhibited microtubule-cell cortex attachment activity. These observations indicate that EB1 and ch-TOG regulate microtubule organisation differently via distinct regions in the plus ends of microtubules.


Asunto(s)
Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Nanopartículas/química , Anticuerpos/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente , Microtúbulos/metabolismo , Transporte de Proteínas , Coloración y Etiquetado , Tubulina (Proteína)/metabolismo
4.
PLoS Negl Trop Dis ; 3(6): e464, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19554083

RESUMEN

BACKGROUND: Approximately 200 million people worldwide harbour parasitic flatworm infections that cause schistosomiasis. A single drug-praziquantel (PZQ)-has served as the mainstay pharmacotherapy for schistosome infections since the 1980s. However, the relevant in vivo target(s) of praziquantel remain undefined. METHODS AND FINDINGS: Here, we provide fresh perspective on the molecular basis of praziquantel efficacy in vivo consequent to the discovery of a remarkable action of PZQ on regeneration in a species of free-living flatworm (Dugesia japonica). Specifically, PZQ caused a robust (100% penetrance) and complete duplication of the entire anterior-posterior axis during flatworm regeneration to yield two-headed organisms with duplicated, integrated central nervous and organ systems. Exploiting this phenotype as a readout for proteins impacting praziquantel efficacy, we demonstrate that PZQ-evoked bipolarity was selectively ablated by in vivo RNAi of voltage-operated calcium channel (VOCC) beta subunits, but not by knockdown of a VOCC alpha subunit. At higher doses of PZQ, knockdown of VOCC beta subunits also conferred resistance to PZQ in lethality assays. CONCLUSIONS: This study identifies a new biological activity of the antischistosomal drug praziquantel on regenerative polarity in a species of free-living flatworm. Ablation of the bipolar regenerative phenotype evoked by PZQ via in vivo RNAi of VOCC beta subunits provides the first genetic evidence implicating a molecular target crucial for in vivo PZQ activity and supports the 'VOCC hypothesis' of PZQ efficacy. Further, in terms of regenerative biology and Ca(2+) signaling, these data highlight a novel role for voltage-operated Ca(2+) entry in regulating in vivo stem cell differentiation and regenerative patterning.


Asunto(s)
Antihelmínticos/farmacología , Canales de Calcio/metabolismo , Platelmintos/efectos de los fármacos , Praziquantel/farmacología , Regeneración/efectos de los fármacos , Animales , Silenciador del Gen , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética
5.
Dev Biol ; 287(2): 314-35, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16243308

RESUMEN

Planaria possess remarkable powers of regeneration. After bisection, one blastema regenerates a head, while the other forms a tail. The ability of previously-adjacent cells to adopt radically different fates could be due to long-range signaling allowing determination of position relative to, and the identity of, remaining tissue. However, this process is not understood at the molecular level. Following the hypothesis that gap-junctional communication (GJC) may underlie this signaling, we cloned and characterized the expression of the Innexin gene family during planarian regeneration. Planarian innexins fall into 3 groups according to both sequence and expression. The concordance between expression-based and phylogenetic grouping suggests diversification of 3 ancestral innexin genes into the large family of planarian innexins. Innexin expression was detected throughout the animal, as well as specifically in regeneration blastemas, consistent with a role in long-range signaling relevant to specification of blastema positional identity. Exposure to a GJC-blocking reagent which does not distinguish among gap junctions composed of different Innexin proteins (is not subject to compensation or redundancy) often resulted in bipolar (2-headed) animals. Taken together, the expression data and the respecification of the posterior blastema to an anteriorized fate by GJC loss-of-function suggest that innexin-based GJC mediates instructive signaling during regeneration.


Asunto(s)
Conexinas/metabolismo , Uniones Comunicantes/fisiología , Planarias/fisiología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/fisiología , Conexinas/genética , Hibridación in Situ , Intestinos/fisiología , Datos de Secuencia Molecular , Fenómenos Fisiológicos del Sistema Nervioso , Células Fotorreceptoras de Invertebrados/fisiología , Filogenia , Regeneración/fisiología , Transducción de Señal
6.
Laterality ; 10(3): 193-205, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16028337

RESUMEN

Consistent visceral asymmetry in vertebrates raises fascinating questions about the developmental mechanisms and evolutionary origin of fixed chirality of the left-right axis. One persistent controversy is whether consistently biased asymmetry is a later innovation imposed on a bilaterally symmetrical primitive body-plan, or whether asymmetry is a fundamental property predating the bilateria. The morphology of planaria suggests proximity to the origin of the bilateral body-plan, and they are commonly thought to be left-right symmetrical, as no consistent anatomical asymmetries have been described despite over a century of study of regeneration. Here, we show that D. japonica possess a consistent functional asymmetry in eye patterning defects caused by inhibition of H+/K+-ATPase activity (an ion flux mechanism recently shown to be an important early step in the asymmetry of several vertebrate embryos). Moreover, an endogenous transcript of the non-gastric H+/K+-ATPase subunit alpha is expressed in the head blastema shortly after amputation. Taken together, these data suggest that (1) left-right asymmetry is at least as old as planaria, (2) subtle functional asymmetries should be sought in other more primitive model systems that are believed to be symmetrical, and (3) symmetrical paired structures may in fact contain information about their position on the L or R side.


Asunto(s)
ATPasa Intercambiadora de Hidrógeno-Potásio/biosíntesis , Fenómenos Fisiológicos Oculares , Planarias/fisiología , Regeneración , Animales , Evolución Biológica , Lateralidad Funcional , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Bombas Iónicas
7.
Cell ; 111(1): 77-89, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12372302

RESUMEN

A pharmacological screen identified the H+ and K+ ATPase transporter as obligatory for normal orientation of the left-right body axis in Xenopus. Maternal H+/K+-ATPase mRNA is symmetrically expressed in the 1-cell Xenopus embryo but becomes localized during the first two cell divisions, demonstrating that asymmetry is generated within two hours postfertilization. Although H+/K+-ATPase subunit mRNAs are symmetrically localized in chick embryos, an endogenous H+/K+-ATPase-dependent difference in membrane voltage potential exists between the left and right sides of the primitive streak. In both species, pharmacologic or genetic perturbation of endogenous H+/K+-ATPase randomized the sided pattern of asymmetrically expressed genes and induced organ heterotaxia. Thus, LR asymmetry determination depends on a very early differential ion flux created by H+/K+-ATPase activity.


Asunto(s)
Tipificación del Cuerpo , Membrana Celular/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/química , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Potenciales de la Membrana , Omeprazol/análogos & derivados , 2-Piridinilmetilsulfinilbencimidazoles , Animales , Compuestos de Bario/farmacología , Embrión de Pollo , Cloruros/farmacología , Electrofisiología , Inhibidores Enzimáticos/farmacología , Hibridación in Situ , Lansoprazol , Datos de Secuencia Molecular , Omeprazol/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Inhibidores de la Bomba de Protones , ARN Mensajero/metabolismo , Factores de Tiempo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA