Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Fish Physiol Biochem ; 45(5): 1759-1769, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31243686

RESUMEN

The spectral characteristics of visual pigments are a major determinant in eliciting a response to light. To study the absorption maximum of the photoreceptors and their sensitivity to light in fish, rod outer segments (ROS) and cone cells were purified from the rock bream Oplegnathus fasciatus adapted to the dark. Ultraviolet/visible spectroscopic analyses of the ROS in the dark and its difference spectra indicated an absorption maximum of the visual pigment at ~ 500 nm, and each eye of 1-year-old rock bream contained at least 1.2 nmol of rhodopsin-like visual pigments. Microspectrophotometric analysis of the cone cell outer segments led to identification of three visual pigments with individual absorption maxima at 425, 520, and 585 nm. Monochromatic light-emitting diode (LED) modules with different wavelengths (violet 405 nm, blue 465 nm, cyan 505 nm, green 530 nm, amber 590 nm, and red 655 nm) were constructed to examine the spectral sensitivity and photoresponse in association with the absorption maximum of the photoreceptor. Analysis of chromophore decay upon illumination with each LED at low (27 µmol/m2/s) and high (343 µmol/m2/s) intensities showed the highest sensitivity of the photoreceptor upon illumination with the 505-nm cyan LED, followed by LEDs with wavelengths of 530 nm > 465 nm > 405 nm > 590 nm > 655 nm. Photoresponse analysis of the fish using a video tracking system, in the dark and upon illumination, also showed faster movement of fish with illumination with the cyan LED followed by in the order of green ≈ blue > violet > amber > red. These results indicated that a light with a wavelength closer to the absorption maximum of rhodopsin was more effective in eliciting a response to the light.


Asunto(s)
Conducta Animal/efectos de la radiación , Peces/fisiología , Luz , Fototaxis , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales
2.
Fish Shellfish Immunol ; 80: 348-356, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29906620

RESUMEN

Unfavorable environmental conditions and inappropriate culture practices have increased the vulnerability of cultured fish to disease infection. Up to date many studies have aimed to determine a feeding regimen to maximize productivity; however, very little information on immune responses of cultured fish in response to underfeeding or overfeeding is available. Therefore, a preliminary study was conducted to evaluate effects of graded feeding levels (i.e., food availability) on growth performance and immune-related gene expression of juvenile olive flounder (Paralichthys olivaceus). Six different feeding rates including 1, 4, 7, 10, 13, and 16% body weight per day (BW/d) were randomly assigned to three replicate tanks stocking 150 fish (average initial body weight: 0.27 ±â€¯0.02 g; mean ±â€¯SD) per tank. A feeding trial lasted for two weeks. Based on the results of the weight gain, nutrient gain, and whole-body compositions and energy content, the feeding rate of 10%, 13%, and 16% BW/d resulted in high nutritional status, whereas the feeding rate of 1% and 4% BW/d resulted in low nutritional status. Intermediate nutritional status was observed at the feeding rate of 7% BW/d. In the given rearing conditions the optimum feeding rate resulting in the maximum growth was estimated to be 11.9% BW/d based on the quadratic broken-line regression model, chosen as the best-fit model among the tested models. Expression of immune-related genes including IL-8 and IgM was significantly down-regulated in the flounder fed at 1% BW/d in comparison to those fed at 7% BW/d. Interestingly, expression of these genes in the flounder fed at 10%, 13%, and 16% BW/d was relatively down-regulated in comparison to that of the flounder fed at 7% BW/d. Although no statistical difference was detected, overall response patterns of other immune-related genes, including TLR3, polymeric Ig receptor, lysozyme C-type, GPx, SOD, and Trx followed what IL-8 and IgM exhibited in response to the various feeding rates. Given the current challenges in aquaculture of the flounder our findings suggest to prohibit underfeeding or overfeeding (i.e., ad-libitum feeding) when culturing the young flounder.


Asunto(s)
Ingestión de Alimentos , Lenguado , Desnutrición , Animales , Ingestión de Alimentos/genética , Ingestión de Alimentos/inmunología , Lenguado/genética , Lenguado/crecimiento & desarrollo , Lenguado/inmunología , Expresión Génica , Inmunoglobulina M/inmunología , Interleucina-8/inmunología , Desnutrición/genética , Desnutrición/inmunología , Estado Nutricional
3.
Fish Shellfish Immunol ; 49: 450-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26747640

RESUMEN

Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms.


Asunto(s)
Apoferritinas/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica , Hierro/metabolismo , Smegmamorpha/genética , Smegmamorpha/inmunología , Secuencia de Aminoácidos , Animales , Apoferritinas/inmunología , Edwardsiella tarda/inmunología , Proteínas de Peces/inmunología , Lipopolisacáridos/inmunología , Filogenia , Poli I-C/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Smegmamorpha/clasificación , Smegmamorpha/metabolismo , Streptococcus/inmunología
4.
Fish Physiol Biochem ; 39(2): 263-75, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22843312

RESUMEN

This study aims to investigate the genes encoding prolactin (PRL) and prolactin receptors (PRLR) and their tissue-specific expression in starry flounder Platichthys stellatus. Starry flounder PRL gene consisting of five exons encodes an ORF of 212 amino acid residue comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. It showed amino acid identities of 73 % with tuna Thunnus thynnus, 71 % with black porgy Acanthopagrus schlegelii, 69 % with Nile tilapia Oreochromis niloticus, 64 % with pufferfish Takifugu rubripes, 63 % with rainbow trout Oncorhynchus mykiss, and 60 % with mangrove rivulus Kryptolebias marmoratus. Phylogenetic analysis of piscine PRLs also demonstrated a similarity between starry flounder and other teleosts but with a broad distinction from non-teleost PRLs. PRLR gene consists of eight exons encoding a protein of 528 amino acid residues. It showed a similarity to the PRLR2 subtype as reflected by amino acid identities of 54 % with A. schlegelii, 48.1 % with K. marmoratus, 46.3 % with tilapia O. mossambicus, and 46.1 % with O. niloticus PRLR2 as compared to PRLR1 isoform having less than 30 % identities. While mRNA transcript corresponding to PRL was detected only from the pituitary, most of PRLR mRNA was detected in the gill, kidney, and intestine, with a small amount in the ovary. The level of PRL transcript progressively increased during 6 days of acclimation to freshwater and then decreased but stayed higher than that of seawater at 60 days of acclimation. An opposite pattern of changes including a decrease at the beginning of the acclimation but a slight increase in the level osmolality was found as adaptation continued. The results support the osmoregulatory role of PRL signaling in starry flounder.


Asunto(s)
Aclimatación/fisiología , Lenguado/genética , Regulación de la Expresión Génica/fisiología , Prolactina/genética , Receptores de Prolactina/genética , Aclimatación/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Agua Dulce , Regulación de la Expresión Génica/genética , Branquias/metabolismo , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Hipófisis/metabolismo , Prolactina/metabolismo , Receptores de Prolactina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Homología de Secuencia , Especificidad de la Especie
5.
Dev Reprod ; 22(4): 341-350, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30680333

RESUMEN

Chemokines is a small protein that plays a major role in inflammatory reactions and viral infections as a chemotactic factor of cytokines involved in innate immunity. Most of the chemokines belong to the chemokine groups CC and CXC. To investigate the immune system of the olive flounder (Paralichthys olivaceus), an expression pattern specifically induced in the early developmental stages of analysis is examined using qRT-PCR. We also examined tissue-specific expression of both CC and CXC chemokine in healthy olive flounder samples. CC and CXC chemokine shows increased expression after immune-related organs are formed compared to expression during early development. CC chemokine was more highly expressed in the fin, but CXC chemokine showed higher expression in the gills, spleen, intestines, and stomach. Spatial and temporal expression analysis of CC and CXC chemokine were performed following viral hemorrhagic septicemia virus (VHSV) infection. CC chemokine showed high expression in the gills, which are respiratory organs, whereas CXC chemokine was more highly expressed in the kidneys, an immune-related organ. These results suggest that CC and CXC chemokine play an important role in the immune response of the olive flounder, and may be used as basic data for the immunological activity and gene analysis of it as well as other fish.

6.
Dev Reprod ; 21(4): 371-378, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29354783

RESUMEN

Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

7.
Dev Reprod ; 20(4): 297-304, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28144635

RESUMEN

Lectins belong to the pattern-recognition receptors (PRRs) class and play important roles in the recognition and elimination of pathogens via the innate immune system. Recently, it was reported that lily-type lectin-1 is involved when a pathogen attacks in the early immune response of fish. However, this study is limited to information that the lectin is involved in the innate immune response against viral infection. In the present study, the lily-type lectin-2 and -3 of Oplegnathus fasciatus (OfLTL-2 and 3) have been presented to be included B-lectin domain and two D-mannose binding sites in the amino acid sequence that an important feature for the fundamental structure. To investigate the functional properties of OfLTLs, the tissue distribution in the healthy rock bream and temporal expression during early developmental stage analysis are performed using quantitative real-time PCR. OfLTL-2 and 3 are predominantly expressed in the liver and skin, but rarely expressed in other organ. Also, the transcripts of OfLTLs are not expressed during the early developmental stage but its transcripts are increased after immune-related organs which are fully formed. In the challenge experiment with RBIV (rock bream iridovirus), the expression of OfLTLs was increased much more strongly in the late response than the early, unlike previously known. These results suggest that OfLTLs are specifically expressed in the immune-related tissues when those organs are fully formed and it can be inferred that the more intensively involved in the second half to the virus infection.

8.
Aquat Biosyst ; 9(1): 1, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23276106

RESUMEN

BACKGROUND: Prolactin (PRL) is a key hormone for osmoregulation in fish. Levels of PRL in the pituitary gland and plasma ion composition of clownfish seem to change to regulate their hydromineral balance during adaptation to waters of different salinities. In order to understand osmoregulatory mechanism and its association with growth performance and PRL in fish, the gene encoding PRL and its expression level in cinnamon clownfish Amphiprion melanopus upon acclimation to low salinity was analyzed. RESULTS: The PRL gene of A. melanopus encoded a protein of 212 amino acid residues comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. Analysis of growth performance under different salinities of 34, 25, 15, and 10 ppt indicated that cinnamon clownfish could survive under salinities as low as 10 ppt. A higher rate of growth was observed at the lower salinities as compared to that of 34 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased to reach the peak level until 24 h of acclimation at 15 ppt, but decreased back as adaptation continued to 144 h. In contrast, levels of plasma Na+, Cl-, and osmolality decreased at the initial stage (4-8 h) of acclimation at 15 pt but increased back as adaptation continued till 144 h. CONCLUSION: Cinnamon clownfish could survive under salinities as low as 10 ppt. Upon shifting the salinity of the surrounding water from 34 ppt to 15 ppt, the level of the PRL transcripts gradually increased during the initial stage of acclimation but decreased back to the normal level as adaptation continued. An opposite pattern of changes - decrease at the beginning followed by an increase - in the levels of plasma Na+, Cl-, and osmolality was found upon acclimation to low salinity. The results suggest an involvement of PRL in the processes of osmoregulation and homeostasis in A. melanopus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA