RESUMEN
Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.
Asunto(s)
Adhesinas Bacterianas , Anaplasma marginale , Dermacentor , Animales , Anaplasma marginale/genética , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Dermacentor/microbiología , Bovinos , Adhesión Bacteriana/fisiología , Anaplasmosis/microbiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Técnicas de Visualización de Superficie Celular , Interacciones Huésped-Patógeno , Enfermedades de los Bovinos/microbiologíaRESUMEN
Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26-31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.
Asunto(s)
Anaplasma marginale , Anaplasmosis , Enfermedades de los Bovinos , Anaplasma , Anaplasma marginale/genética , Anaplasmosis/genética , Anaplasmosis/prevención & control , Animales , Bovinos , Enfermedades de los Bovinos/microbiología , Perros , Humanos , Mutagénesis , Desarrollo de Vacunas , VirulenciaRESUMEN
Many vector-borne pathogens, including Anaplasma spp., Borrelia spp., Trypanosoma spp., and Plasmodium spp., establish persistent infection in the mammalian host by using antigenic variation. These pathogens are also able to establish strain superinfection, defined as infection of an infected host with additional strains of the same pathogen despite an adaptive immune response. The ability to establish superinfection results in a population of susceptible hosts even with high pathogen prevalence. It is likely that antigenic variation, responsible for persistent infection, also plays a role in the establishment of superinfection. Anaplasma marginale, an antigenically variable, obligate intracellular, tickborne bacterial pathogen of cattle, is well suited for the study of the role of antigenically variant surface proteins in the establishment of superinfection. Anaplasma marginale establishes persistent infection by variation in major surface protein 2 (msp2), which is encoded by approximately six donor alleles that recombine into a single expression site to produce immune escape variants. Nearly all cattle in regions of high prevalence are superinfected. By tracking the acquisition of strains in calves through time, the complement of donor alleles, and how those donor alleles are expressed, we determined that simple variants derived from a single donor allele, rather than multiple donor alleles, were predominant. Additionally, superinfection is associated with the introduction of new donor alleles, but these new donor alleles are not predominantly used to establish superinfection. These findings highlight the potential for competition among multiple strains of a pathogen for resources within the host and the balance between pathogen fitness and antigenic variation.
Asunto(s)
Anaplasma marginale , Anaplasmosis , Enfermedades de los Bovinos , Sobreinfección , Garrapatas , Bovinos , Animales , Anaplasma marginale/genética , Anaplasmosis/microbiología , Sobreinfección/microbiología , Ghana/epidemiología , Infección Persistente , Antígenos Bacterianos , Mamíferos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Enfermedades de los Bovinos/microbiologíaRESUMEN
Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.
Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Cryptosporidium/efectos de los fármacos , Cryptosporidium/enzimología , Pirazoles/farmacología , Piridinas/farmacología , Animales , Animales Recién Nacidos , Bovinos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Huésped Inmunocomprometido , Interferón gamma/deficiencia , Interferón gamma/genética , Masculino , Ratones , Ratones Noqueados , Pirazoles/química , Pirazoles/farmacocinética , Piridinas/química , Piridinas/farmacocinética , Ratas , Ratas WistarRESUMEN
Anaplasma spp. are obligate intracellular, tick-borne, bacterial pathogens that cause bovine and human anaplasmosis. We lack tools to prevent these diseases in part due to major knowledge gaps in our fundamental understanding of the tick-pathogen interface, including the requirement for and molecules involved in iron transport during tick colonization. We determine that iron is required for the pathogen Anaplasma marginale, which causes bovine anaplasmosis, to replicate in Dermacentor andersoni tick cells. Using bioinformatics and protein modeling, we identified three orthologs of the Gram-negative siderophore-independent iron uptake system, FbpABC. Am069, the A. marginale ortholog of FbpA, lacks predicted iron-binding residues according to the NCBI conserved domain database. However, according to protein modeling, the best structural orthologs of Am069 are iron transport proteins from Cyanobacteria and Campylobacterjejuni. We then determined that all three A. marginale genes are modestly differentially expressed in response to altered host cell iron levels, despite the lack of a Ferric uptake regulator or operon structure. This work is foundational for building a mechanistic understanding of iron uptake, which could lead to interventions to prevent bovine and human anaplasmosis.
Asunto(s)
Anaplasma marginale , Anaplasmosis , Dermacentor , Anaplasma , Anaplasma marginale/genética , Anaplasmosis/microbiología , Animales , Bovinos , Dermacentor/genética , Dermacentor/microbiología , Humanos , HierroRESUMEN
Vector-borne pathogens commonly establish multistrain infections, also called complex infections. How complex infections are established, either before or after the development of an adaptive immune response, termed coinfection or superinfection, respectively, has broad implications for the maintenance of genetic diversity, pathogen phenotype, epidemiology, and disease control strategies. Anaplasma marginale, a genetically diverse, obligate, intracellular, tick-borne bacterial pathogen of cattle, commonly establishes complex infections, particularly in regions with high transmission rates. Both coinfection and superinfection can be established experimentally; however, it is unknown how complex infections develop in a natural transmission setting. To address this question, we introduced naive animals into a herd in southern Ghana with a high infection prevalence and high transmission pressure and tracked the strain acquisition of A. marginale through time using multilocus sequence typing. As expected, the genetic diversity among strains was high, and 97% of animals in the herd harbored multiple strains. All the introduced naive animals became infected, and three to four strains were typically detected in an individual animal prior to seroconversion, while one to two new strains were detected in an individual animal following seroconversion. On average, the number of strains acquired via superinfection was 16% lower than the number acquired via coinfection. Thus, while complex infections develop via both coinfection and superinfection, coinfection predominates in this setting. These findings have broad implications for the development of control strategies in high-transmission settings.
Asunto(s)
Anaplasma marginale/genética , Anaplasmosis/microbiología , Coinfección/microbiología , Sobreinfección/microbiología , Alelos , Anaplasmosis/etiología , Anaplasmosis/transmisión , Animales , Bovinos , Coinfección/etiología , Sobreinfección/etiologíaRESUMEN
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as "ecological filters" for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.
Asunto(s)
Vectores Arácnidos/microbiología , Dermacentor/microbiología , Francisella/genética , Variación Genética , Animales , Tracto Gastrointestinal/microbiología , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fenotipo , Conejos , VirulenciaRESUMEN
UNLABELLED: Tick-borne transmission of bacterial pathogens in the order Rickettsiales is responsible for diverse infectious diseases, many of them severe, in humans and animals. Transmission dynamics differ among these pathogens and are reflected in the pathogen-vector interaction. Anaplasma marginale has been shown to establish and maintain infectivity within Dermacentor spp. for weeks to months while escaping the complex network of vacuolar peptidases that are responsible for digestion of the tick blood meal. How this prolonged maintenance of infectivity in a potentially hostile environment is achieved has been unknown. Using the natural vector Dermacentor andersoni, we demonstrated that A. marginale-infected tick vacuoles (AmVs) concurrently recruit markers of the early endosome (Rab5), recycling endosome (Rab4 and Rab11), and late endosome (Rab7), are maintained near neutral pH, do not fuse with lysosomes, exclude the protease cathepsin L, and engage the endoplasmic reticulum and Golgi apparatus for up to 21 days postinfection. Maintenance of this safe vacuolar niche requires active A. marginale protein synthesis; in its absence, the AmVs mature into acidic, protease-active phagolysosomes. Identification of this bacterially directed modeling of the tick midgut endosome provides a mechanistic basis for examination of the differences in transmission efficiency observed among A. marginale strains and among vector populations. IMPORTANCE: Ticks transmit a variety of intracellular bacterial pathogens that cause significant diseases in humans and animals. For successful transmission, these bacterial pathogens must first gain entry into the tick midgut digestive cells, avoid digestion, and establish a replicative niche without harming the tick vector. Little is known about how this replicative niche is established and maintained. Using the ruminant pathogen A. marginale and its natural tick vector, D. andersoni, this study characterized the features of the A. marginale niche in the tick midgut and demonstrates that A. marginale protein synthesis is required for the maintenance of this niche. This work opens a new line of inquiry about the pathogen effectors and their targets within the tick that mediate tick-pathogen interactions and ultimately serve as the determinants of pathogen success.
Asunto(s)
Anaplasma marginale/fisiología , Vectores Arácnidos/microbiología , Dermacentor/microbiología , Anaplasma marginale/genética , Anaplasma marginale/aislamiento & purificación , Animales , Vectores Arácnidos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citoplasma/metabolismo , Citoplasma/microbiología , Dermacentor/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiologíaRESUMEN
UNLABELLED: The remarkable genetic diversity of vector-borne pathogens allows for the establishment of superinfection in the mammalian host. To have a long-term impact on population strain structure, the introduced strains must also be transmitted by a vector population that has been exposed to the existing primary strain. The sequential exposure of the vector to multiple strains frequently prevents establishment of the second strain, a phenomenon termed superinfection exclusion. As a consequence, superinfection exclusion may greatly limit genetic diversity in the host population, which is difficult to reconcile with the high degree of genetic diversity maintained among vector-borne pathogens. Using Anaplasma marginale, a tick-borne bacterial pathogen of ruminants, we hypothesized that superinfection exclusion is temporally dependent and that longer intervals between strain exposures allow successful acquisition and transmission of a superinfecting strain. To test this hypothesis, we sequentially exposed Dermacentor andersoni ticks to two readily tick-transmissible strains of A. marginale The tick feedings were either immediately sequential or 28 days apart. Ticks were allowed to transmission feed and were individually assessed to determine if they were infected with one or both strains. The second strain was excluded from the tick when the exposure interval was brief but not when it was prolonged. Midguts and salivary glands of individual ticks were superinfected and transmission of both strains occurred only when the exposure interval was prolonged. These findings indicate that superinfection exclusion is temporally dependent, which helps to account for the differences in pathogen strain structure in tropical compared to temperate regions. IMPORTANCE: Many vector-borne pathogens have marked genetic diversity, which influences pathogen traits such as transmissibility and virulence. The most successful strains are those that are preferentially transmitted by the vector. However, the factors that determine successful transmission of a particular strain are unknown. In the case of intracellular, bacterial, tick-borne pathogens, one potential factor is superinfection exclusion, in which colonization of ticks by the first strain of a pathogen it encounters prevents the transmission of a second strain. Using A. marginale, the most prevalent tick-borne pathogen of cattle worldwide, and its natural tick vector, we determined that superinfection exclusion occurs when the time between exposures to two strains is brief but not when it is prolonged. These findings suggest that superinfection exclusion may influence strain transmission in temperate regions, where tick activity is limited by season, but not in tropical regions, where ticks are active for long periods.
Asunto(s)
Anaplasma marginale/crecimiento & desarrollo , Anaplasma marginale/aislamiento & purificación , Antibiosis , Vectores Arácnidos/microbiología , Dermacentor/microbiología , Anaplasma marginale/clasificación , Animales , Tracto Gastrointestinal/microbiología , Glándulas Salivales/microbiología , Factores de TiempoRESUMEN
Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alleles alone is insufficient to generate the number of variants required for persistence, A. marginale uses segmental gene conversion, in which oligonucleotide segments from multiple alleles are recombined into the expression site to generate a novel msp2 mosaic not represented elsewhere in the genome. Whether these segmental changes are sufficient to evade a broad antibody response is unknown. We addressed this question by identifying Msp2 variants that differed in primary structure within the immunogenic hypervariable region microdomains and tested whether they represented true antigenic variants. The minimal primary structural difference between variants was a single amino acid resulting from a codon insertion, and overall, the amino acid identity among paired microdomains ranged from 18 to 92%. Collectively, 89% of the expressed structural variants were also antigenic variants across all biological replicates, independent of a specific host major histocompatibility complex haplotype. Biological relevance is supported by the following: (i) all structural variants were expressed during infection of a natural host, (ii) the structural variation observed in the microdomains corresponded to the mean length of variants generated by segmental gene conversion, and (iii) antigenic variants were identified using a broad antibody response that developed during infection of a natural host. The findings demonstrate that segmental gene conversion efficiently generates Msp2 antigenic variants.
Asunto(s)
Anaplasma marginale/inmunología , Anaplasmosis/inmunología , Variación Antigénica , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Secuencia de Aminoácidos , Anaplasma marginale/química , Anaplasma marginale/genética , Anaplasmosis/microbiología , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Humanos , Evasión Inmune , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de SecuenciaRESUMEN
A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MS(E)). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.
Asunto(s)
Antioxidantes/metabolismo , Caspasa 14/metabolismo , Epidermis/enzimología , Oxígeno/metabolismo , Infecciones Estafilocócicas/enzimología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Biopelículas , Epidermis/metabolismo , Epidermis/microbiología , Humanos , Oxígeno/análisis , Transporte de Proteínas , Piel/enzimología , Piel/metabolismo , Piel/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , PorcinosRESUMEN
We developed a porcine dermal explant model to determine the extent to which Staphylococcus aureus biofilm communities deplete oxygen, change pH, and produce damage in underlying tissue. Microelectrode measurements demonstrated that dissolved oxygen (DO) in biofilm-free dermal tissue was 4.45 ± 1.17 mg/liter, while DO levels for biofilm-infected tissue declined sharply from the surface, with no measurable oxygen detectable in the underlying dermal tissue. Magnetic resonance imaging demonstrated that biofilm-free dermal tissue had a significantly lower relative effective diffusion coefficient (0.26 ± 0.09 to 0.30 ± 0.12) than biofilm-infected dermal tissue (0.40 ± 0.12 to 0.48 ± 0.12; P < 0.0001). Thus, the difference in DO level was attributable to biofilm-induced oxygen demand rather than changes in oxygen diffusivity. Microelectrode measures showed that pH within biofilm-infected explants was more alkaline than in biofilm-free explants (8.0 ± 0.17 versus 7.5 ± 0.15, respectively; P < 0.002). Cellular and nuclear details were lost in the infected explants, consistent with cell death. Quantitative label-free shotgun proteomics demonstrated that both proapoptotic programmed cell death protein 5 and antiapoptotic macrophage migration inhibitory factor accumulated in the infected-explant spent medium, compared with uninfected-explant spent media (1,351-fold and 58-fold, respectively), consistent with the cooccurrence of apoptosis and necrosis in the explants. Biofilm-origin proteins reflected an extracellular matrix-adapted lifestyle of S. aureus. S. aureus biofilms deplete oxygen, increase pH, and induce cell death, all factors that contribute to impede wound healing.
Asunto(s)
Oxígeno/metabolismo , Piel/microbiología , Staphylococcus aureus/fisiología , Porcinos , Animales , Biopelículas/crecimiento & desarrollo , Cultura , Concentración de Iones de Hidrógeno , Consumo de Oxígeno , Técnicas de Cultivo de TejidosRESUMEN
BACKGROUND: The large amounts of data generated by genomics, transcriptomics and proteomics have increased our understanding of the biology of Anaplasma marginale. However, these data have also led to new assumptions that require testing, ideally through classical genetic mutation. One example is the definition of genes associated with virulence. Here we describe the molecular characterization of a red fluorescent and spectinomycin and streptomycin resistant A. marginale mutant generated by Himar1 transposon mutagenesis. RESULTS: High throughput genome sequencing to determine the Himar1-A. marginale genome junctions established that the transposon sequences were integrated within the coding region of the omp10 gene. This gene is arranged within an operon with AM1225 at the 5' end and with omp9, omp8, omp7 and omp6 arranged in tandem at the 3' end. RNA analysis to determine the effects of the transposon insertion on the expression of omp10 and downstream genes revealed that the Himar1 insertion not only reduced the expression of omp10 but also that of downstream genes. Transcript expression from omp9, and omp8 dropped by more than 90% in comparison with their counterparts in wild-type A. marginale. Immunoblot analysis showed a reduction in the production of Omp9 protein in these mutants compared to wild-type A. marginale. CONCLUSIONS: These results demonstrate that transposon mutagenesis in A. marginale is possible and that this technology can be used for the creation of insertional gene knockouts that can be evaluated in natural host-vector systems.
Asunto(s)
Anaplasma marginale/genética , Proteínas de la Membrana Bacteriana Externa/genética , Elementos Transponibles de ADN , Operón , Secuencia de Bases , Western Blotting , Cromosomas Bacterianos , ADN Bacteriano , Técnicas de Silenciamiento del Gen , Genes Bacterianos , Datos de Secuencia Molecular , MutagénesisRESUMEN
Efficient cattle production and provision of animal-sourced foods in much of Africa is constrained by vector-borne bacterial and protozoal diseases. Effective vaccines are not currently available for most of these infections resulting in a continuous disease burden that limits genetic improvement. We tested whether stimulation of innate immunity using the Toll-like Receptor (TLR) 7 agonist imiquimod, formulated with saponin and water-in-oil emulsion, would protect against morbidity and mortality due to Anaplasma marginale, a tick-borne pathogen of cattle highly endemic in west Africa. In Trial 1, haplotype matched Friesian x Sanga (F1) A. marginale negative calves were allocated to either the experimental group (n = 10) and injected with the synthetic TLR 7 agonist/saponin formulation or to an untreated control group (n = 10). TLR7 agonist/saponin injected calves responded with significantly elevated rectal temperature, enlarged regional lymph nodes, and elevated levels of IL-6 post-injection as compared to control group calves. All calves were then allowed to graze in pasture for natural exposure to tick transmission. All calves in both groups acquired A. marginale, consistent with the high transmission rate in the endemic region. The need for antibiotic treatment, using pre-existing criteria, was significantly lower in the experimental group (odds ratio for not requiring treatment was 9.3, p = 0.03) as compared to the control group. Despite treatment, 6/10 calves in the control group died, reflecting treatment failures that are typical of anaplasmosis in the acute phase, while mortality in the experimental group was 1/10 (odds ratio for survival was 13.5, p = 0.03). The trial was then repeated using 45 Friesian x Sanga calves per group. In Trial 2, the odds ratios for preventing the need for treatment and for mortality in the TLR7 agonist/saponin experimental group versus the control group were 5.6 (p = 0.0002) and 7.0 (p = 0.004), respectively, reproducing the findings of the initial trial. Together these findings demonstrate that innate immune stimulation using a TLR7 agonist formulated with saponin and water-in-oil emulsion provides significant protection against disease caused by tick borne A. marginale in highly susceptible cross-bred cattle, critically important for their potential to increase productivity for smallholder farmers in Africa.
Asunto(s)
Adyuvantes Inmunológicos , Anaplasma marginale , Anaplasmosis , Enfermedades de los Bovinos , Receptor Toll-Like 7 , Animales , Bovinos , Receptor Toll-Like 7/agonistas , Anaplasma marginale/inmunología , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/mortalidad , Anaplasmosis/prevención & control , Adyuvantes Inmunológicos/farmacología , África Occidental , Imiquimod , Saponinas/farmacología , Enfermedades Endémicas/veterinaria , Enfermedades Endémicas/prevención & controlRESUMEN
Little research is available on acquired immunity to rabies in dogs and cats from Central Africa, particularly regarding the legal movements of pets. Movement of domestic animals from rabies-endemic countries like Cameroon to rabies free areas poses one of the main risks for rabies introduction into rabies-free areas. Thus, the aim of this study was to assess the effect of various risk factors on rabies vaccine efficacy in Cameroonian. Since the dependent variable, rabies neutralizing titres, were censored from above (right-censoring), Generalized Additive Model for Location, Scale and Shape (GAMLSS) was used in the analysis. Overall, 85.7% of dogs and 100% of cats had titres greater than or equal to 0.5 IU/mL, which is considered protective. Additionally, compared to cats, the value of the rabies-neutralizing serum titres in dogs was on average smaller by 2.3 IU/mL. For each additional year of age, the value of the rabies-neutralizing serum titre, on average, increased by approximately 0.14 IU/mL. Finally, for each 30 additional days between the date of the last rabies vaccination and the date of the sampling, the value the rabies neutralizing titre, on average, decreased by approximately 0.10 IU/mL, given the species and age at sampling were equivalent. These results are useful for assessing risk and improving surveillance to prevent the introduction of rabies into a country via the international movement of animals.
Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Vacunas Antirrábicas , Rabia , Animales , Perros , Gatos , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/administración & dosificación , Enfermedades de los Perros/prevención & control , Enfermedades de los Perros/inmunología , Enfermedades de los Gatos/prevención & control , Enfermedades de los Gatos/inmunología , Enfermedades de los Gatos/virología , Rabia/prevención & control , Rabia/veterinaria , Factores de Riesgo , Camerún , Viaje , Masculino , Femenino , Vacunación/veterinariaRESUMEN
Anaplasma marginale subsp. centrale was the first vaccine used to protect against a rickettsial disease and is still in widespread use a century later. As its use preceded development of either cryopreservation or cell culture, the vaccine strain was maintained for decades by sequential passage among donor animals, excluding the natural tick-borne transmission cycle that provides a selective pressure or population "bottleneck." We demonstrated that the vaccine strain is genetically heterogeneous at 46 chromosomal loci and that heterogeneity was maintained upon inoculation into recipient animals. The number of variants per site ranged from 2 to 11 with a mean of 2.8/locus and a mode and median of 2/locus; variants included single-nucleotide polymorphisms, insertions/deletions, polynucleotide tracts, and different numbers of perfect repeats. The genetic heterogeneity is highly unlikely to be a result of strain contamination based on analysis using a panel of eight gene markers with a high power for strain discrimination. In contrast, heterogeneity appears to be a result of genetic drift in the absence of the restriction of tick passage. Heterogeneity could be reduced following tick passage, and the reduced heterogeneity could be maintained in sequential intravenous and tick-borne passages. The reduction in vaccine strain heterogeneity following tick passage did not confer an enhanced transmission phenotype, indicating that a stochastically determined population bottleneck was likely responsible as opposed to a positive selective pressure. These findings demonstrate the plasticity of an otherwise highly constrained genome and highlight the role of natural transmission cycles in shaping and maintaining the bacterial genome.
Asunto(s)
Anaplasma marginale/genética , Anaplasma marginale/inmunología , Anaplasmosis/transmisión , Vacunas Bacterianas/genética , Heterogeneidad Genética , Anaplasmosis/prevención & control , Animales , Garrapatas/microbiologíaRESUMEN
Anaplasma marginale is a tick-borne pathogen that causes bovine anaplasmosis, which affects cattle around the world. Despite its broad prevalence and severe economic impacts, limited treatments exist for this disease. Our lab previously reported that a high proportion of Rickettsia bellii, a tick endosymbiont, in the microbiome of a population of Dermacentor andersoni ticks negatively impacts the ticks' ability to acquire A. marginale. To better understand this correlation, we used mixed infection of A. marginale and R. bellii in D. andersoni cell culture. We assessed the impacts of different amounts of R. bellii in coinfections, as well as established R. bellii infection, on the ability of A. marginale to establish an infection and grow in D. andersoni cells. From these experiments, we conclude that A. marginale is less able to establish an infection in the presence of R. bellii and that an established R. bellii infection inhibits A. marginale replication. This interaction highlights the importance of the microbiome in preventing tick vector competence and may lead to the development of a biological or mechanistic control for A. marginale transmission by the tick.
RESUMEN
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Asunto(s)
Anaplasma phagocytophilum , Anaplasmosis , Artrópodos , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Anaplasma phagocytophilum/fisiología , Animales , Endorribonucleasas , Ixodes/genética , Ixodes/microbiología , Proteínas Serina-Treonina Quinasas , Factor 2 Asociado a Receptor de TNFRESUMEN
Tick midgut is the primary infection site required by tick-borne pathogens to initiate their development for transmission. Despite the biological significance of this organ, cell cultures derived exclusively from tick midgut tissues are unavailable and protocols for generating primary midgut cell cultures have not been described. To study the mechanism of Anaplasma marginale-tick cell interactions, we successfully developed an in vitro Dermacentor andersoni primary midgut cell culture system. Midgut cells were maintained for up to 120 days. We demonstrated the infection of in vitro midgut cells by using an A. marginale omp10::himar1 mutant with continued replication for up to 10 days post-infection. Anaplasma marginale infection of midgut cells regulated the differential expression of tick α-(1,3)-fucosyltransferases A1 and A2. Silencing of α-(1,3)-fucosyltransferase A2 in uninfected midgut cells reduced the display of fucosylated glycans and significantly lowered the susceptibility of midgut cells to A. marginale infection, suggesting that the pathogen utilized core α-(1,3)-fucose of N-glycans to infect tick midgut cells. This is the first report using in vitro primary D. andersoni midgut cells to study A. marginale-tick cell interactions at the molecular level. The primary midgut cell culture system will further facilitate the investigation of tick-pathogen interactions, leading to the development of novel intervention strategies for tick-borne diseases.