Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biophys J ; 104(4): 798-806, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23442958

RESUMEN

The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.


Asunto(s)
Canales de Calcio/química , Proteínas del Tejido Nervioso/química , Canales de Potencial de Receptor Transitorio/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Canales de Calcio/genética , Canales de Calcio/metabolismo , Humanos , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/genética , Ligandos , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oximas/farmacología , Mutación Puntual , Estructura Terciaria de Proteína , Ratas , Homología de Secuencia , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Xenopus
2.
Bioorg Med Chem Lett ; 22(17): 5485-92, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22868228

RESUMEN

A series of potent antagonists of the ion channel transient receptor potential A1 (TRPA1) was developed by modifying lead structure 16 that was discovered by high-throughput screening. Based on lead compound 16, a SAR was established, showing a narrow region at the nitro-aromatic R(1) moiety and at the warhead, while the R(2) side had a much wider scope including ureas and carbamates. Compound 16 inhibits Ca(2+)-activated TRPA1 currents reversibly in whole cell patch clamp experiments, indicating that under in vivo conditions, it does not react covalently, despite its potentially electrophilic ketone.


Asunto(s)
Amidas/química , Amidas/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Calcio/metabolismo , Canales de Calcio/metabolismo , Carbamatos/química , Carbamatos/farmacología , Humanos , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo , Urea/química , Urea/farmacología
3.
Sci Rep ; 5: 13278, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26299574

RESUMEN

Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.


Asunto(s)
Abietanos/farmacología , Activación del Canal Iónico/efectos de los fármacos , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Resinas Sintéticas/farmacología , Electricidad Estática , Abietanos/química , Animales , Células CHO , Cricetinae , Cricetulus , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Halógenos/química , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Ratones , Protones , Xenopus
4.
Toxicon ; 43(8): 923-32, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15208026

RESUMEN

In order to find new peptide inhibitors for voltage-dependent potassium (Kv) channels, we examined the effects of venom from Theraphosa leblondi on Kv channel-mediated currents with the whole-cell patch-clamp technique. Both A-type currents in cultured hippocampal neurons and A-type currents recorded from HEK 293 cells transiently expressing recombinant Kv4.2 channels were selectively inhibited by T. leblondi venom. No venom activity was observed on recombinant Kv1.3, Kv1.4, Kv2.1 or Kv3.4 channels. We purified and sequenced three novel homologous peptides from this venom, which are related to previously identified Kv4 channel-specific peptide inhibitors and were named T. leblondi toxin (TLTx) 1, 2 and 3. The mode of action of TLTx1 on recombinant Kv4.2 channels was studied in more detail. TLTx1 inhibited Kv4.2-mediated currents with an IC50 of approximately 200 nM, and macroscopic current inactivation was slowed in the presence of TLTx1. Notably, TLTx1 also caused a shallower voltage dependence of Kv4.2 peak conductance and a shift of the activation midpoint to more positive potentials (DeltaV1/2 = +35 mV). TLTx1 caused a noticable slowing of Kv4.2 activation kinetics, and Kv4.2 deactivation kinetics were accelerated by TLTx1 as infered from Rb+ tail current measurements. Chimeric Kv2.1(4.2L3-4) channels, in which the linker region between S3 and S4 of the TLTx1-insensitive Kv2.1 channel was replaced by the corresponding Kv4.2 domain, were sensitive to TLTx1. Apparently, TLTx1 can act as a gating modifier of Kv4.2 channels.


Asunto(s)
Péptidos/farmacología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/efectos de los fármacos , Venenos de Araña/farmacología , Arañas/química , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo/efectos de los fármacos , Células Cultivadas , Fraccionamiento Químico , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Electrofisiología , Guyana Francesa , Humanos , Cinética , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Técnicas de Placa-Clamp , Péptidos/genética , Péptidos/metabolismo , Canales de Potasio/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína , Canales de Potasio Shal , Venenos de Araña/metabolismo
5.
J Pain Res ; 6: 59-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403691

RESUMEN

AZ465 is a novel selective transient receptor potential cation channel, member A1 (TRPA1) antagonist identified during a focused drug discovery effort. In vitro, AZ465 fully inhibits activation by zinc, O-chlorobenzylidene malononitrile (CS), or cinnamaldehyde of the human TRPA1 channel heterologously expressed in human embryonic kidney cells. Our data using patch-clamp recordings and mouse/human TRPA1 chimeras suggest that AZ465 binds reversibly in the pore region of the human TRPA1 channel. Finally, in an ex vivo model measuring TRPA1 agonist-stimulated release of neuropeptides from human dental pulp biopsies, AZD465 was able to block 50%-60% of CS-induced calcitonin gene-related peptide release, confirming that AZ465 inhibits the native human TRPA1 channel in neuronal tissue.

6.
J Biol Chem ; 282(6): 3478-86, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17142458

RESUMEN

Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.


Asunto(s)
Aminoácidos/fisiología , Apamina/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Quinasas del Centro Germinal , Humanos , Ratones , Datos de Secuencia Molecular , Mutación Puntual , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/biosíntesis
7.
Biophys J ; 86(1 Pt 1): 210-23, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14695263

RESUMEN

We examined whether the N-terminus of Kv4.2 A-type channels (4.2NT) possesses an autoinhibitory N-terminal peptide domain, which, similar to the one of Shaker, mediates inactivation of the open state. We found that chimeric Kv2.1(4.2NT) channels, where the cytoplasmic Kv2.1 N-terminus had been replaced by corresponding Kv4.2 domains, inactivated relatively fast, with a mean time constant of 120 ms as compared to 3.4 s in Kv2.1 wild-type. Notably, Kv2.1(4.2NT) showed features typically observed for Shaker N-type inactivation: fast inactivation of Kv2.1(4.2NT) channels was slowed by intracellular tetraethylammonium and removed by N-terminal truncation (Delta40). Kv2.1(4.2NT) channels reopened during recovery from inactivation, and recovery was accelerated in high external K+. Moreover, the application of synthetic N-terminal Kv4.2 and ShB peptides to inside-out patches containing slowly inactivating Kv2.1 channels mimicked N-type inactivation. Kv4.2 channels, after fractional inactivation, mediated tail currents with biphasic decay, indicative of passage through the open state during recovery from inactivation. Biphasic tail current kinetics were less prominent in Kv4.2/KChIP2.1 channel complexes and virtually absent in Kv4.2Delta40 channels. N-type inactivation features of Kv4.2 open-state inactivation, which may be suppressed by KChIP association, were also revealed by the finding that application of Kv4.2 N-terminal peptide accelerated the decay kinetics of both Kv4.2Delta40 and Kv4.2/KChIP2.1 patch currents. However, double mutant cycle analysis of N-terminal inactivating and pore domains indicated differences in the energetics and structural determinants between Kv4.2 and Shaker N-type inactivation.


Asunto(s)
Activación del Canal Iónico/fisiología , Riñón/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio Shal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA