RESUMEN
SARS-CoV-2 can mutate and evade immunity, with consequences for efficacy of emerging vaccines and antibody therapeutics. Here, we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is a highly variable region of S and provide epidemiological, clinical, and molecular characterization of a prevalent, sentinel RBM mutation, N439K. We demonstrate N439K S protein has enhanced binding affinity to the hACE2 receptor, and N439K viruses have similar in vitro replication fitness and cause infections with similar clinical outcomes as compared to wild type. We show the N439K mutation confers resistance against several neutralizing monoclonal antibodies, including one authorized for emergency use by the US Food and Drug Administration (FDA), and reduces the activity of some polyclonal sera from persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.
Asunto(s)
COVID-19/inmunología , Aptitud Genética , Evasión Inmune , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Humanos , Mutación , Filogenia , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , VirulenciaRESUMEN
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Asunto(s)
Infecciones por Arbovirus , Virus de la Lengua Azul , Lengua Azul , Lengua Azul/virología , Lengua Azul/patología , Animales , Ovinos , Virus de la Lengua Azul/patogenicidad , Infecciones por Arbovirus/virología , Infecciones por Arbovirus/patología , Índice de Severidad de la Enfermedad , Modelos Animales de EnfermedadRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , Virulencia , Aprendizaje AutomáticoRESUMEN
The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.
Asunto(s)
Células Epiteliales/inmunología , Calor , Inmunidad Innata/inmunología , Interferones/inmunología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Replicación Viral/inmunología , Adolescente , Animales , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Femenino , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/genética , Interferones/genética , Interferones/metabolismo , Masculino , Persona de Mediana Edad , Modelos Biológicos , RNA-Seq/métodos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Vero , Replicación Viral/genética , Replicación Viral/fisiologíaRESUMEN
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/virología , Genoma Viral , Animales , Evolución Biológica , Lengua Azul/epidemiología , Virus de la Lengua Azul/genética , Brotes de Enfermedades , Europa (Continente)/epidemiología , Francia , Ganado/virología , Mutación , FilogeniaRESUMEN
Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of transmission between vertebrate and invertebrate hosts.
Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/virología , Enfermedades de los Bovinos/virología , Insectos/virología , Pinocitosis , Internalización del Virus , Actinas/genética , Actinas/metabolismo , Animales , Lengua Azul/genética , Lengua Azul/metabolismo , Lengua Azul/fisiopatología , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/crecimiento & desarrollo , Bovinos , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/metabolismo , Enfermedades de los Bovinos/fisiopatología , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Células Endoteliales/virología , Pase Seriado , Ovinos , Enfermedades de las Ovejas/virología , Replicación ViralRESUMEN
Spatio-temporal patterns of the spread of infectious diseases are commonly driven by environmental and ecological factors. This is particularly true for vector-borne diseases because vector populations can be strongly affected by host distribution as well as by climatic and landscape variables. Here, we aim to identify environmental drivers for bluetongue virus (BTV), the causative agent of a major vector-borne disease of ruminants that has emerged multiple times in Europe in recent decades. In order to determine the importance of climatic, landscape and host-related factors affecting BTV diffusion across Europe, we fitted different phylogeographic models to a dataset of 113 time-stamped and geo-referenced BTV genomes, representing multiple strains and serotypes. Diffusion models using continuous space revealed that terrestrial habitat below 300 m altitude, wind direction and higher livestock densities were associated with faster BTV movement. Results of discrete phylogeographic analysis involving generalized linear models broadly supported these findings, but varied considerably with the level of spatial partitioning. Contrary to common perception, we found no evidence for average temperature having a positive effect on BTV diffusion, though both methodological and biological reasons could be responsible for this result. Our study provides important insights into the drivers of BTV transmission at the landscape scale that could inform predictive models of viral spread and have implications for designing control strategies.
Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/epidemiología , Clima , Ecosistema , Interacciones Huésped-Patógeno , Rumiantes , Animales , Europa (Continente)/epidemiología , Modelos Genéticos , FilogeografíaRESUMEN
Genetic exchange by a process of genome-segment 'reassortment' represents an important mechanism for evolutionary change in all viruses with segmented genomes, yet in many cases a detailed understanding of its frequency and biological consequences is lacking. We provide a comprehensive assessment of reassortment in bluetongue virus (BTV), a globally important insect-borne pathogen of livestock, during recent outbreaks in Europe. Full-genome sequences were generated and analysed for over 150 isolates belonging to the different BTV serotypes that have emerged in the region over the last 5 decades. Based on this novel dataset we confirm that reassortment is a frequent process that plays an important and on-going role in evolution of the virus. We found evidence for reassortment in all ten segments without a significant bias towards any particular segment. However, we observed biases in the relative frequency at which particular segments were associated with each other during reassortment. This points to selective constraints possibly caused by functional relationships between individual proteins or genome segments and genome-wide epistatic interactions. Sites under positive selection were more likely to undergo amino acid changes in newly reassorted viruses, providing additional evidence for adaptive dynamics as a consequence of reassortment. We show that the live attenuated vaccines recently used in Europe have repeatedly reassorted with field strains, contributing to their genotypic, and potentially phenotypic, variability. The high degree of plasticity seen in the BTV genome in terms of segment origin suggests that current classification schemes that are based primarily on serotype, which is determined by only a single genome segment, are inadequate. Our work highlights the need for a better understanding of the mechanisms and epidemiological consequences of reassortment in BTV, as well as other segmented RNA viruses.
Asunto(s)
Virus de la Lengua Azul/genética , Lengua Azul/epidemiología , Lengua Azul/genética , Virus Reordenados/genética , Europa (Continente) , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Coinfection of a cell by two different strains of a segmented virus can give rise to a "reassortant" with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous "backbone." To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.
Asunto(s)
Virus de la Lengua Azul/genética , Genoma Viral , ARN Viral/genética , Virus Reordenados/genética , Recombinación Genética , Animales , Virus de la Lengua Azul/crecimiento & desarrollo , Genotipo , Ratones , Datos de Secuencia Molecular , Fenotipo , Genética Inversa , Análisis de Secuencia de ADN , Ensayo de Placa Viral , Proteínas Estructurales Virales/genéticaRESUMEN
Biobanks of cervical screening (LBC) samples annotated with disease status are an invaluable resource to support the development of tools for the risk stratification of disease. Although there is growing interest in the assessment of RNA-based biomarkers, little is known on the suitability and durability of stored clinical samples (commonly used in cervical screening) to support RNA-based research. RNA was extracted from 260 stored LBC samples. Storage at -80°C or -25°C allowed isolation of sufficient RNA for further analysis. RNA was found to be substantially degraded according to Agilent Bioanalyser data. Despite this, RT-qPCR was successful in 95% samples tested. These data suggest that biobanked LBC samples are suitable for RNA-based assessment even if stored for up to 14 years.
RNA was extracted from 260 cervical screening samples stored at either -80 or -25°C. An Agilent Bioanalyser was used to examine the level of degradation of a convenience sample of RNAs. Reverse transcriptase quantitative PCR (RT-qPCR) was used to quantify levels of two cellular mRNAs in all samples as a practical means of assessing suitability of the samples for mRNA biomarker analysis.
Asunto(s)
Manejo de Especímenes , Neoplasias del Cuello Uterino , Humanos , Femenino , Manejo de Especímenes/métodos , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , ARN/análisis , ARN/aislamiento & purificación , ARN/genética , Cuello del Útero/citología , Detección Precoz del Cáncer/métodos , Bancos de Muestras Biológicas , Biomarcadores/análisis , Estabilidad del ARN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , CitologíaRESUMEN
We report the full-genome sequence of an Indian isolate of bluetongue virus serotype 1 (BTV-1), strain IND1992/01. This is the first report of the entire genome sequence (Seg-1 to Seg-10) of an Eastern (e) strain of BTV-1. These sequence data provide a reference for BTV-1e that will help to define the phylogenetic relationships and geographic origins of distinct Indian lineages of BTV-1 as well as their relationships with other BTV strains from around the world. The availability of data for all 10 genome segments of this strain will also help to identify reassortment events involving this and other virus lineages.
Asunto(s)
Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/genética , Genoma Viral , India , Datos de Secuencia Molecular , SerotipificaciónRESUMEN
The entire genome of the reference strain of bluetongue virus (BTV) serotype 16 (strain RSArrrr/16) was sequenced (a total of 23,518 base pairs). The virus was obtained from the Orbivirus Reference Collection (ORC) at IAH, Pirbright, United Kingdom. The virus strain, which was previously provided by the Onderstepoort Veterinary Research Institute in South Africa, was originally isolated from the Indian subcontinent (Hazara, West Pakistan) in 1960. Previous phylogenetic comparisons show that BTV RNA sequences cluster according to the geographic origins of the virus isolate/lineage, identifying distinct BTV topotypes. Sequence comparisons of segments Seg-1 to Seg-10 show that RSArrrr/16 belongs to the major eastern topotype of BTV (BTV-16e) and can be regarded as a reference strain of BTV-16e for phylogenetic and molecular epidemiology studies. All 10 genome segments of RSArrrr/16 group closely with the vaccine strain of BTV-16 (RSAvvvv/16) that was derived from it, as well as those recently published for a Chinese isolate of BTV-16 (>99% nucleotide identity), suggesting a very recent common ancestry for all three viruses.
Asunto(s)
Virus de la Lengua Azul/genética , Animales , Lengua Azul/virología , Virus de la Lengua Azul/clasificación , Genoma Viral , India , Datos de Secuencia Molecular , Filogenia , SerotipificaciónRESUMEN
The full genome sequence (19,177 bp) of an Indian strain (IND1988/02) of bluetongue virus (BTV) serotype 23 was determined. This virus was isolated from a sheep that had been killed during a severe bluetongue outbreak that occurred in Rahuri, Maharashtra State, western India, in 1988. Phylogenetic analyses of these data demonstrate that most of the genome segments from IND1988/02 belong to the major "eastern" BTV topotype. However, genome segment 5 belongs to the major "western" BTV topotype, demonstrating that IND1988/02 is a reassortant. This may help to explain the increased virulence that was seen during this outbreak in 1988. Genome segment 5 of IND1988/02 shows >99% sequence identity with some other BTV isolates from India (e.g., BTV-3 IND2003/08), providing further evidence of the existence and circulation of reassortant strains on the subcontinent.
Asunto(s)
Virus de la Lengua Azul/genética , Lengua Azul/virología , Genoma Viral , Virus Reordenados/genética , Animales , Secuencia de Bases , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/aislamiento & purificación , India , Datos de Secuencia Molecular , Virus Reordenados/clasificación , Virus Reordenados/aislamiento & purificación , OvinosRESUMEN
All 10 genome segments (Seg-1 to 10-a total of 19,188 bp) were sequenced from a strain of bluetongue virus serotype 3 (BTV-3) from India (strain IND2003/08). Sequence comparisons showed that nine of the genome segments from this virus group with other eastern topotype strains. Genome Seg-2 and Seg-6 group with eastern BTV-3 strains from Japan. However, Seg-5 (the NS1 gene) from IND2003/08 belongs to a western lineage, demonstrating that IND2003/08 is a reassortant between eastern and western topotype bluetongue viruses. This confirms that western BTV strains have been imported and are circulating within the subcontinent.
Asunto(s)
Virus de la Lengua Azul/genética , Genoma Viral , ARN Viral/genética , Virus Reordenados/genética , Análisis de Secuencia de ADN , Animales , Virus de la Lengua Azul/aislamiento & purificación , India , Datos de Secuencia Molecular , Filogenia , Virus Reordenados/aislamiento & purificación , Homología de SecuenciaRESUMEN
Bluetongue virus serotype 2 (IND2003/02) was isolated in Tiruneveli City, Tamil Nadu State, India, and is stored in the Orbivirus Reference Collection at the Institute for Animal Health, Pirbright, United Kingdom. The entire genome of this isolate was sequenced, showing that it is composed of a total of 19,203 bp (all 10 genome segments). This is the first report of the entire genome sequence of a western strain of BTV-2 isolated in India, indicating that this virus has been introduced and is circulating in the region. These data will aid in the development of diagnostics and molecular epidemiology studies of BTV-2 in the subcontinent.
Asunto(s)
Virus de la Lengua Azul/genética , Genoma Viral , Animales , Virus de la Lengua Azul/aislamiento & purificación , India , Anotación de Secuencia Molecular , Datos de Secuencia MolecularRESUMEN
Bluetongue virus type 2, isolated in India in 1982 (IND1982/01), was obtained from the Orbivirus Reference Collection at IAH Pirbright (http://www.reoviridae.org/dsRNA_virus_proteins/ReoID/btv-2.htm#IND1982/01). Full genome sequencing and phylogenetic analyses show that IND1982/01 is a reassortant virus containing genome segments derived from both eastern and western topotypes. These data will help to identify further reassortment events involving this or other virus lineages in the subcontinent.
Asunto(s)
Virus de la Lengua Azul/genética , Lengua Azul/virología , Genoma Viral , Recombinación Genética , Animales , Secuencia de Bases , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/aislamiento & purificación , India , Datos de Secuencia Molecular , Filogenia , RumiantesRESUMEN
Bluetongue virus is the type species of the genus Orbivirus in the family Reoviridae. We report the first complete genome sequence of an isolate (IND2004/01) of bluetongue virus serotype 10 (BTV-10) from Andhra Pradesh, India. This isolate, which is stored in the Orbivirus Reference Collection (ORC) at IAH Pirbright, shows >99% nucleotide identity in all 10 genome segments with a vaccine strain of BTV-10 from the United States.
Asunto(s)
Virus de la Lengua Azul/genética , Lengua Azul/virología , Genoma Viral , Secuencia de Bases , Virus de la Lengua Azul/clasificación , Virus de la Lengua Azul/aislamiento & purificación , India , Datos de Secuencia Molecular , Estados Unidos , Vacunas Virales/genéticaRESUMEN
Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Brotes de Enfermedades , Genómica , Planificación en Salud , Humanos , SARS-CoV-2/genética , Estados Unidos , UniversidadesRESUMEN
During 2008-2009 in Israel, equine encephalosis virus (EEV) caused febrile outbreaks in horses. Phylogenetic analysis of segment 10 of the virus strains showed that they form a new cluster; analysis of segment 2 showed ≈92% sequence identity to EEV-3, the reference isolate. Thus, the source of this emerging EEV remains uncertain.
Asunto(s)
Brotes de Enfermedades/veterinaria , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/virología , Orbivirus/clasificación , Infecciones por Reoviridae/veterinaria , Animales , Línea Celular , Chlorocebus aethiops , Caballos , Datos de Secuencia Molecular , Orbivirus/genética , Orbivirus/aislamiento & purificación , Filogenia , ARN Viral , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/virología , Células VeroRESUMEN
Sheep and goats sampled in Kuwait during February 2010 were seropositive for bluetongue virus (BTV). BTV isolate KUW2010/02, from 1 of only 2 sheep that also tested positive for BTV by real-time reverse transcription-PCR, caused mild clinical signs in sheep. Nucleotide sequencing identified KUW2010/02 as a novel BTV serotype.