Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849987

RESUMEN

CALCIUM-DEPENDENT PROTEIN KINASE (CDPK) stimulates reactive oxygen species (ROS)-dependent signaling by activating RESPIRATORY BURST OXIDASE HOMOLOG (RBOH). The lysigenous aerenchyma is a gas space created by cortical cell death that facilitates oxygen diffusion from the shoot to the root tips. Previously, we showed that RBOHH is indispensable for the induction of aerenchyma formation in rice (Oryza sativa) roots under low-oxygen conditions. Here, we showed that CDPK5 and CDPK13 localize to the plasma membrane where RBOHH functions. Mutation analysis of the serine at residues 92 and 107 of RBOHH revealed that these residues are required for CDPK5- and CDPK13-mediated activation of ROS production. The requirement of Ca2+ for CDPK5 and CDPK13 function was confirmed using in vitro kinase assays. CRISPR/Cas9-based mutagenesis of CDPK5 and/or CDPK13 revealed that the double knockout almost completely suppressed inducible aerenchyma formation, whereas the effects were limited in the single knockout of either CDPK5 or CDPK13. Interestingly, the double knockout almost suppressed the induction of adventitious root formation, which is widely conserved in vascular plants, under low-oxygen conditions. Our results suggest that CDPKs are essential for the acclimation of rice to low-oxygen conditions, and also for many other plant species conserving CDPK-targeted phosphorylation sites in RBOH homologues.

2.
Plant Cell ; 33(7): 2340-2359, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33826745

RESUMEN

Leguminous plants produce nodules for nitrogen fixation; however, nodule production incurs an energy cost. Therefore, as an adaptive strategy, leguminous plants halt root nodule development when sufficient amounts of nitrogen nutrients, such as nitrate, are present in the environment. Although legume NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors have recently been identified, understanding how nodulation is controlled by nitrate, a fundamental question for nitrate-mediated transcriptional regulation of symbiotic genes, remains elusive. Here, we show that two Lotus japonicus NLPs, NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1)/LjNLP4 and NRSYM2/LjNLP1, have overlapping functions in the nitrate-induced control of nodulation and act as master regulators for nitrate-dependent gene expression. We further identify candidate target genes of LjNLP4 by combining transcriptome analysis with a DNA affinity purification-seq approach. We then demonstrate that LjNLP4 and LjNIN, a key nodulation-specific regulator and paralog of LjNLP4, have different DNA-binding specificities. Moreover, LjNLP4-LjNIN dimerization underlies LjNLP4-mediated bifunctional transcriptional regulation. These data provide a basic principle for how nitrate controls nodulation through positive and negative regulation of symbiotic genes.


Asunto(s)
Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Lotus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Simbiosis/fisiología , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282011

RESUMEN

The phytohormone abscisic acid (ABA) plays a major role in abiotic stress responses in plants, and subclass III SNF1-related protein kinase 2 (SnRK2) kinases mediate ABA signaling. In this study, we identified Raf36, a group C Raf-like protein kinase in Arabidopsis, as a protein that interacts with multiple SnRK2s. A series of reverse genetic and biochemical analyses revealed that 1) Raf36 negatively regulates ABA responses during postgermination growth, 2) the N terminus of Raf36 is directly phosphorylated by SnRK2s, and 3) Raf36 degradation is enhanced in response to ABA. In addition, Raf22, another C-type Raf-like kinase, functions partially redundantly with Raf36 to regulate ABA responses. A comparative phosphoproteomic analysis of ABA-induced responses of wild-type and raf22raf36-1 plants identified proteins that are phosphorylated downstream of Raf36 and Raf22 in planta. Together, these results support a model in which Raf36/Raf22 function mainly under optimal conditions to suppress ABA responses, whereas in response to ABA, the SnRK2 module promotes Raf36 degradation as a means of alleviating Raf36-dependent inhibition and allowing for heightened ABA signaling to occur.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
4.
Plant Cell Physiol ; 63(3): 369-383, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016226

RESUMEN

Cleavage and polyadenylation at the 3' end of the pre-mRNA is essential for mRNA function, by regulating its translatability, stability and translocation to the cytoplasm. Cleavage factor I (CFI) is a multi-subunit component of the pre-mRNA 3' end processing machinery in eukaryotes. Here, we report that plant CFI 25 subunit of CFI plays an important role in maintaining the diversity of the 3' ends of mRNA. The genome of Arabidopsis thaliana (L.) Heynh. contained four genes encoding three putative CFI subunits (AtCFI 25, AtCFI 59 and AtCFI 68), orthologous to the mammalian CFI subunits. There were two CFI 25 paralogs (AtCFI 25a and AtCFI 25b) that shared homology with human CFI 25. Two null alleles of AtCFI 25a displayed smaller rosette leaves, longer stigmatic papilla, smaller anther, earlier flowering and lower fertility compared to wild-type plants. Null alleles of AtCFI 25b, as well as, plants ectopically expressing full-length cDNA of AtCFI 25a, displayed no obvious morphological defects. AtCFI 25a was shown to interact with AtCFI 25b, AtCFI 68 and itself, suggesting various forms of CFI in plants. Furthermore, we show that AtCFI 25a function was essential for maintaining proper diversity of the 3' end lengths of transcripts coding for CFI subunits, suggesting a self-regulation of the CFI machinery in plants. AtCFI 25a was also important to maintain 3' ends for other genes to different extent. Collectively, AtCFI 25a, but not AtCFI 25b, seemed to play important roles during Arabidopsis development by maintaining proper diversity of the 3' UTR lengths.


Asunto(s)
Arabidopsis , Animales , Regiones no Traducidas 3'/genética , Arabidopsis/genética , Fibrinógeno , Poliadenilación/genética
5.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33481007

RESUMEN

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis , Arabidopsis , Aluminio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato Deshidrogenasa , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(20): E4710-E4719, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712840

RESUMEN

Reactive oxygen species (ROS) are known to be important signal molecules that are involved in biotic and abiotic stress responses as well as in growth regulation. However, the molecular mechanisms by which ROS act as a growth regulator, as well as how ROS-dependent growth regulation relates to its roles in stress responses, are not well understood. We performed a time-course microarray analysis of Arabidopsis root tips upon treatment with hydrogen peroxide, which we named "ROS-map." Using the ROS-map, we identified an MYB transcription factor, MYB30, which showed a strong response to ROS treatment and is the key regulator of a gene network that leads to the hydrogen peroxide-dependent inhibition of root cell elongation. Intriguingly, this network contained multiple genes involved in very-long-chain fatty acid (VLCFA) transport. Finally, we showed that MYB30 is necessary for root growth regulation during defense responses, thus providing a molecular link between these two ROS-associated processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Meristema/inmunología , Inmunidad de la Planta/genética , Raíces de Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Meristema/genética , Meristema/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Factores de Transcripción/genética
7.
EMBO J ; 35(22): 2468-2483, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27679653

RESUMEN

Perception of microbe-associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen-activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho-signaling transduction pathway from PRR-mediated pathogen recognition to MAPK activation in plants. We found that the receptor-like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1-LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin-induced MAPK activation and disease resistance to Alternaria brassicicola PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin-induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Quitina/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/enzimología , Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Inactivación de Genes , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
8.
PLoS Pathog ; 14(11): e1007447, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30458055

RESUMEN

Regulated degradation of proteins by the 26S proteasome plays important roles in maintenance and signalling in eukaryotic cells. Proteins are marked for degradation by the action of E3 ligases that site-specifically modify their substrates by adding chains of ubiquitin. Innate immune signalling in plants is deeply reliant on the ubiquitin-26S proteasome system. While progress has been made in understanding substrate ubiquitination during plant immunity, how these substrates are processed upon arrival at the proteasome remains unclear. Here we show that specific members of the HECT domain-containing family of ubiquitin protein ligases (UPL) play important roles in proteasomal substrate processing during plant immunity. Mutations in UPL1, UPL3 and UPL5 significantly diminished immune responses activated by the immune hormone salicylic acid (SA). In depth analyses of upl3 mutants indicated that these plants were impaired in reprogramming of nearly the entire SA-induced transcriptome and failed to establish immunity against a hemi-biotrophic pathogen. UPL3 was found to physically interact with the regulatory particle of the proteasome and with other ubiquitin-26S proteasome pathway components. In agreement, we demonstrate that UPL3 enabled proteasomes to form polyubiquitin chains, thereby regulating total cellular polyubiquitination levels. Taken together, our findings suggest that proteasome-associated ubiquitin ligase activity of UPL3 promotes proteasomal processivity and is indispensable for development of plant immunity.


Asunto(s)
Inmunidad de la Planta/inmunología , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligasas/genética , Ligasas/metabolismo , Inmunidad de la Planta/fisiología , Poliubiquitina/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ácido Salicílico/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
9.
Plant Physiol ; 181(2): 499-509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31366719

RESUMEN

Homologous recombination is a key process for maintaining genome integrity and diversity. In eukaryotes, the nucleosome structure of chromatin inhibits the progression of homologous recombination. The DNA repair and recombination protein RAD54 alters the chromatin structure via nucleosome sliding to enable homology searches. For homologous recombination to progress, appropriate recruitment and dissociation of RAD54 is required at the site of homologous recombination; however, little is known about the mechanism regulating RAD54 dynamics in chromatin. Here, we reveal that the histone demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1) regulates the dissociation of RAD54 at damaged sites during homologous recombination repair in the somatic cells of Arabidopsis (Arabidopsis thaliana). Depletion of LDL1 leads to an overaccumulation of RAD54 at damaged sites with DNA double-strand breaks. Moreover, RAD54 accumulates at damaged sites by recognizing histone H3 Lys 4 di-methylation (H3K4me2); the frequency of the interaction between RAD54 and H3K4me2 increased in the ldl1 mutant with DNA double-strand breaks. We propose that LDL1 removes RAD54 at damaged sites by demethylating H3K4me2 during homologous recombination repair and thereby maintains genome stability in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ADN Helicasas/metabolismo , Histona Demetilasas/metabolismo , Reparación del ADN por Recombinación , Arabidopsis/genética , Histonas/metabolismo
10.
Plant Physiol ; 180(3): 1629-1646, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064811

RESUMEN

Hydrogen peroxide (H2O2) is a common signal molecule initiating transcriptional responses to all the known biotic and abiotic stresses of land plants. However, the degree of involvement of H2O2 in these stress responses has not yet been well studied. Here we identify time-dependent transcriptome profiles stimulated by H2O2 application in Arabidopsis (Arabidopsis thaliana) seedlings. Promoter prediction based on transcriptome data suggests strong crosstalk among high light, heat, and wounding stress responses in terms of environmental stresses and between the abscisic acid (ABA) and salicylic acid (SA) responses in terms of phytohormone signaling. Quantitative analysis revealed that ABA accumulation is induced by H2O2 but SA is not, suggesting that the implied crosstalk with ABA is achieved through ABA accumulation while the crosstalk with SA is different. We identified potential direct regulatory pairs between regulator transcription factor (TF) proteins and their regulated TF genes based on the time-course transcriptome analysis for the H2O2 response, in vivo regulation of the regulated TF by the regulator TF identified by expression analysis of mutants and overexpressors, and in vitro binding of the regulator TF protein to the target TF promoter. These analyses enabled the establishment of part of the transcriptional regulatory network for the H2O2 response composed of 15 regulatory pairs of TFs, including five pairs previously reported. This regulatory network is suggested to be involved in a wide range of biotic and abiotic stress responses in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes , Peróxido de Hidrógeno/farmacología , Plantones/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Nat Chem Biol ; 14(3): 299-305, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29355850

RESUMEN

The phytohormone auxin indole-3-acetic acid (IAA) regulates nearly all aspects of plant growth and development. Despite substantial progress in our understanding of auxin biology, delineating specific auxin response remains a major challenge. Auxin regulates transcriptional response via its receptors, TIR1 and AFB F-box proteins. Here we report an engineered, orthogonal auxin-TIR1 receptor pair, developed through a bump-and-hole strategy, that triggers auxin signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic, convex IAA (cvxIAA) hijacked the downstream auxin signaling in vivo both at the transcriptomic level and in specific developmental contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1) receptor. Harnessing the cvxIAA-ccvTIR1 system, we provide conclusive evidence for the role of the TIR1-mediated pathway in auxin-induced seedling acid growth. The cvxIAA-ccvTIR1 system serves as a powerful tool for solving outstanding questions in auxin biology and for precise manipulation of auxin-mediated processes as a controllable switch.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas F-Box/química , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/química , Receptores de Superficie Celular/química , Arabidopsis/química , Arabidopsis/genética , Cruzamientos Genéticos , Cinética , Mutación , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Unión Proteica , Ingeniería de Proteínas , Plantones , Transducción de Señal , Transgenes
12.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26069325

RESUMEN

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Asunto(s)
Arabidopsis/fisiología , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas , Análisis por Micromatrices , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
13.
Genes Cells ; 23(1): 46-53, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29235215

RESUMEN

Cell-free protein synthesis (CFPS) systems largely retain the endogenous translation machinery of the host organism, making them highly applicable for proteomics analysis of diverse biological processes. However, laborious and time-consuming cloning procedures hinder progress with CFPS systems. Herein, we report the development of a rapid and efficient two-step polymerase chain reaction (PCR) method to prepare linear DNA templates for a wheat germ CFPS system. We developed a novel, effective short 3'-untranslated region (3'-UTR) sequence that facilitates translation. Application of the short 3'-UTR to two-step PCR enabled the generation of various transcription templates from the same plasmid, including fusion proteins with N- or C-terminal tags, and truncated proteins. Our method supports the cloning-free expression of target proteins using an mRNA pool from biological material. The established system is a highly versatile platform for in vitro protein synthesis using wheat germ CFPS.


Asunto(s)
Regiones no Traducidas 3' , Proteínas de Arabidopsis/metabolismo , Sistema Libre de Células , ADN de Plantas/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Clonación Molecular , Cartilla de ADN/química , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , ADN de Plantas/genética
14.
Plant Cell ; 28(6): 1406-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27252292

RESUMEN

Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution.


Asunto(s)
Marchantia/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Marchantia/efectos de la radiación , Proteínas de Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Biosci Biotechnol Biochem ; 83(12): 2276-2279, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31469034

RESUMEN

We introduce a rapid method for easily elucidating transcription factor (TF) cis-elements by adopting a highly efficient in vitro protein synthesis method and identifying protein-DNA interactions using PCR. We determined two cis-elements for plant TFs using this method, and the results confirmed our method as an easy and time-saving alternative for elucidating TF cis-elements using common laboratory procedures.


Asunto(s)
Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Plantas/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(32): 8969-74, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27466405

RESUMEN

Domestication of crops based on artificial selection has contributed numerous beneficial traits for agriculture. Wild characteristics such as red pericarp and seed shattering were lost in both Asian (Oryza sativa) and African (Oryza glaberrima) cultivated rice species as a result of human selection on common genes. Awnedness, in contrast, is a trait that has been lost in both cultivated species due to selection on different sets of genes. In a previous report, we revealed that at least three loci regulate awn development in rice; however, the molecular mechanism underlying awnlessness remains unknown. Here we isolate and characterize a previously unidentified EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family member named REGULATOR OF AWN ELONGATION 2 (RAE2) and identify one of its requisite processing enzymes, SUBTILISIN-LIKE PROTEASE 1 (SLP1). The RAE2 precursor is specifically cleaved by SLP1 in the rice spikelet, where the mature RAE2 peptide subsequently induces awn elongation. Analysis of RAE2 sequence diversity identified a highly variable GC-rich region harboring multiple independent mutations underlying protein-length variation that disrupt the function of the RAE2 protein and condition the awnless phenotype in Asian rice. Cultivated African rice, on the other hand, retained the functional RAE2 allele despite its awnless phenotype. Our findings illuminate the molecular function of RAE2 in awn development and shed light on the independent domestication histories of Asian and African cultivated rice.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Alelos , Modelos Moleculares , Oryza/genética , Proteínas de Plantas/genética
17.
Plant Cell Physiol ; 59(7): 1385-1397, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415182

RESUMEN

Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ARN Helicasas DEAD-box/metabolismo , Metilación de ADN , Hojas de la Planta/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Islas de CpG , Citosina/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Unión al ADN/metabolismo , Exones , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/metabolismo , Hojas de la Planta/genética , Dominios Proteicos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética
18.
Proc Natl Acad Sci U S A ; 111(21): 7861-6, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24821766

RESUMEN

DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of indeterminate domain (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Proteínas de Arabidopsis/genética , Proteínas Co-Represoras/genética , Cartilla de ADN , Regulación de la Expresión Génica de las Plantas/genética , Técnicas del Sistema de Dos Híbridos
19.
Plant Cell Physiol ; 57(11): 2245-2254, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27816945

RESUMEN

Heat shock protein 90 (HSP90) is a molecular chaperone that is required for the function of various substrate proteins, also known as client proteins. It is proposed that HSP90 buffers or hides phenotypic variations in animals and plants by masking mutations in some of its client proteins. However, none of the client proteins with cryptic mutations has been identified to date. Here, we identify the first client protein example by which HSP90 buffers a mutation: the auxin receptor transport inhibitor response 1 (TIR1). TIR1 interacts with HSP90 in the nucleus. An HSP90-specific inhibitor abolished the nuclear localization of TIR1 and the auxin-induced degradation of a TIR1-substrate, indicating that TIR1 is an HSP90 client protein. Plants with a null mutation in the TIR1 gene had a defect in auxin response, whereas plants with a point mutation in the TIR1 gene responded to auxin treatment in young seedlings, but a cryptic defect in its auxin response was exposed with HSP90 inhibitor treatment. These results demonstrate that HSP90 masks a point mutation in the auxin receptor TIR1 and thereby buffers auxin-responsive phenotypes.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Receptores de Superficie Celular/genética , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Fenotipo , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo
20.
BMC Plant Biol ; 16: 48, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912131

RESUMEN

BACKGROUND: Mitogen-activated protein kinase (MPK) cascades are important to cellular signaling in eukaryotes. They regulate growth, development and the response to environmental challenges. MPK cascades function via reversible phosphorylation of cascade components, MEKK, MEK, and MPK, but also by MPK substrate phosphorylation. Using mass spectrometry, we previously identified many in vivo MPK3 and MPK6 substrates in Arabidopsis thaliana, and we disclosed their phosphorylation sites. RESULTS: We verified phosphorylation of several of our previously identified MPK3/6 substrates using a nonradioactive in vitro labeling assay. We engineered MPK3, MPK4, and MPK6 to accept bio-orthogonal ATPγS analogs for thiophosphorylating their appropriate substrate proteins. Subsequent alkylation of the thiophosphorylated amino acid residue(s) allows immunodetection using thiophosphate ester-specific antibodies. Site-directed mutagenesis of amino acids confirmed the protein substrates' site-specific phosphorylation by MPK3 and MPK6. A combined assay with MPK3, MPK6, and MPK4 revealed substrate specificity of the individual kinases. CONCLUSION: Our work demonstrates that the in vitro-labeling assay represents an effective, specific and highly sensitive test for determining kinase-substrate relationships.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA