Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurovirol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856821

RESUMEN

Human immunodeficiency virus-associated neurocognitive disorders persist in the combination antiretroviral therapy era. CD4 nadir is a well-established predictor of cognition cross-sectionally, but its impact on longitudinal neurocognitive (NC) trajectories is unclear. The few studies on this topic examined trajectories of global cognition, rather than specific NC domains. The current study examined CD4 nadir in relation to domain-specific NC decline. 132 HIV + adults from the Temple/Drexel Comprehensive NeuroHIV Center, Clinical and Translational Research Support Core Cohort were administered comprehensive NC assessments longitudinally, with last visit occurring an average of 12 years after CD4 nadir. Linear mixed models were used to examine CD4 nadir in relation to longitudinal NC trajectories in three empirically identified NC domains: speed/executive function (S/EF), visuospatial memory (VM), and verbal fluency (VF). CD4 nadir was associated with change in VF (p = 0.020), but not with S/EF or VM. Specifically, those with CD4 nadir < 200 demonstrated increasing VF over time (p = .002), whereas those with CD4 nadir > 200 demonstrated stable VF (p = .568), though these differing trajectories may partly reflect regression to the mean or differential practice effect. CD4 dynamics over time were analyzed as potential mechanisms for the identified associations, with mixed findings. While low CD4 nadir has been associated with weaker neurocognition among people living with HIV, the results of this study suggest that low CD4 nadir is not associated with ongoing decline a decade later. Nadir-related deficits in VF may be stable or even improve over time, possibly reflecting the beneficial cognitive effects of long-term treatment and immune reconstitution.

2.
Mol Ther ; 28(1): 19-28, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31672284

RESUMEN

Defining the variables that impact the specificity of CRISPR/Cas9 has been a major research focus. Whereas sequence complementarity between guide RNA and target DNA substantially dictates cleavage efficiency, DNA accessibility of the targeted loci has also been hypothesized to be an important factor. In this study, functional data from two genome-wide assays, genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq) and circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), have been computationally analyzed in conjunction with DNA accessibility determined via DNase I-hypersensitive sequencing from the Encyclopedia of DNA Elements (ENCODE) Database and transcriptome from the Sequence Read Archive to determine whether cellular factors influence CRISPR-induced cleavage efficiency. CIRCLE-seq and GUIDE-seq datasets were selected to represent the absence and presence of cellular factors, respectively. Data analysis revealed that correlations between sequence similarity and CRISPR-induced cleavage frequency were altered by the presence of cellular factors that modulated the level of DNA accessibility. The above-mentioned correlation was abolished when cleavage sites were located in less accessible regions. Furthermore, CRISPR-mediated edits were permissive even at regions that were insufficient for most endogenous genes to be expressed. These results provide a strong basis to dissect the contribution of local chromatin modulation markers on CRISPR-induced cleavage efficiency.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Biología Computacional/métodos , ADN/genética , Edición Génica/métodos , Secuencia de Bases/genética , Línea Celular Tumoral , Cromatina/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Bases de Datos Genéticas , Desoxirribonucleasa I/genética , Genoma Humano , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Guía de Kinetoplastida/genética , RNA-Seq , Transcripción Genética , Transcriptoma
3.
Cell Mol Life Sci ; 77(24): 5079-5099, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32577796

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.


Asunto(s)
Complejo SIDA Demencia/genética , Sistema Nervioso Central/patología , Infecciones por VIH/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Complejo SIDA Demencia/patología , Complejo SIDA Demencia/terapia , Terapia Antirretroviral Altamente Activa , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Sistema Nervioso Central/virología , Regulación Viral de la Expresión Génica/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , VIH-1/patogenicidad , Humanos , Microglía/metabolismo , Microglía/patología , Microglía/virología , Neuronas/metabolismo , Neuronas/patología , Neuronas/virología
4.
Traffic ; 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29708629

RESUMEN

The human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein functions both intracellularly and extracellularly. Intracellularly, the main function is to enhance transcription of the viral promoter. However, this process only requires a small amount of intracellular Tat. The majority of Tat is secreted through an unconventional mechanism by binding to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2 ), a phospholipid in the inner leaflet of the plasma membrane that is required for secretion. This interaction is mediated by the basic domain of Tat (residues 48-57) and a conserved tryptophan (residue 11). After binding to PtdIns(4,5)P2 , Tat secretion diverges into multiple pathways, which we categorized as oligomerization-mediated pore formation, spontaneous translocation and incorporation into exosomes. Extracellular Tat has been shown to be neurotoxic and toxic to other cells of the central nervous system (CNS) and periphery, able to recruit immune cells to the CNS and cerebrospinal fluid, and alter the gene expression and morphology of uninfected cells. The effects of extracellular Tat have been examined in HIV-1-associated neurocognitive disorders (HAND); however, only a small number of studies have focused on the mechanisms underlying Tat secretion. In this review, the molecular mechanisms of Tat secretion will be examined in a variety of biologically relevant cell types.

5.
Med Microbiol Immunol ; 208(2): 131-169, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30834965

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.


Asunto(s)
Variación Genética , VIH-1/crecimiento & desarrollo , VIH-1/genética , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/virología , Interacciones Huésped-Patógeno , Humanos
6.
J Neurovirol ; 23(1): 113-124, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27400931

RESUMEN

Even in the era of combination antiretroviral therapies used to combat human immunodeficiency virus type 1 (HIV-1) infection, up to 50 % of well-suppressed HIV-1-infected patients are still diagnosed with mild neurological deficits referred to as HIV-associated neurocognitive disorders (HAND). The multifactorial nature of HAND likely involves the HIV-1 accessory protein viral protein R (Vpr) as an agent of neuropathogenesis. To investigate the effect of naturally occurring variations in Vpr on HAND in well-suppressed HIV-1-infected patients, bioinformatic analyses were used to correlate peripheral blood-derived Vpr sequences with patient neurocognitive performance, as measured by comprehensive neuropsychological assessment and the resulting Global Deficit Score (GDS). Our studies revealed unique associations between GDS and the presence of specific amino acid changes in peripheral blood-derived Vpr sequences [neuropsychological impairment Vpr (niVpr) variants]. Amino acids N41 and A55 in the Vpr sequence were associated with more pronounced neurocognitive deficits (higher GDS). In contrast, amino acids I37 and S41 were connected to measurably lower GDS. All niVpr variants were also detected in DNA isolated from HIV-1-infected brain tissues. The implication of these results is that niVpr variants alter the genesis and/or progression of HAND through differences in Vpr-mediated effects in the peripheral blood and/or the brain.


Asunto(s)
Disfunción Cognitiva/diagnóstico , Infecciones por VIH/diagnóstico , Interacciones Huésped-Patógeno , Polimorfismo Genético , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Adulto , Sustitución de Aminoácidos , Terapia Antirretroviral Altamente Activa , Antivirales/uso terapéutico , Encéfalo/patología , Encéfalo/virología , Cognición/fisiología , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Femenino , Expresión Génica , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/fisiopatología , VIH-1 , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Índice de Severidad de la Enfermedad , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Retrovirology ; 13(1): 32, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27143130

RESUMEN

BACKGROUND: HIV-1 entry is a receptor-mediated process directed by the interaction of the viral envelope with the host cell CD4 molecule and one of two co-receptors, CCR5 or CXCR4. The amino acid sequence of the third variable (V3) loop of the HIV-1 envelope is highly predictive of co-receptor utilization preference during entry, and machine learning predictive algorithms have been developed to characterize sequences as CCR5-utilizing (R5) or CXCR4-utilizing (X4). It was hypothesized that while the V3 loop is predominantly responsible for determining co-receptor binding, additional components of the HIV-1 genome may contribute to overall viral tropism and display sequence signatures associated with co-receptor utilization. RESULTS: The accessory protein Tat and the HlV-1 long terminal repeat (LTR) were analyzed with respect to genetic diversity and compared by Jensen-Shannon divergence which resulted in a correlation with both mean genetic diversity as well as the absolute difference in genetic diversity between R5- and X4-genome specific trends. As expected, the V3 domain of the gp120 protein was enriched with statistically divergent positions. Statistically divergent positions were also identified in Tat amino acid sequences within the transactivation and TAR-binding domains, and in nucleotide positions throughout the LTR. We further analyzed LTR sequences for putative transcription factor binding sites using the JASPAR transcription factor binding profile database and found several putative differences in transcription factor binding sites between R5 and X4 HIV-1 genomes, specifically identifying the C/EBP sites I and II, and Sp site III to differ with respect to sequence configuration for R5 and X4 LTRs. CONCLUSION: These observations support the hypothesis that co-receptor utilization coincides with specific genetic signatures in HIV-1 Tat and the LTR, likely due to differing transcriptional regulatory mechanisms and selective pressures applied within specific cellular targets during the course of productive HIV-1 infection.


Asunto(s)
Variación Genética , Proteína gp120 de Envoltorio del VIH/genética , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , VIH-1/fisiología , Fragmentos de Péptidos/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Sitios de Unión , Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Humanos , Fragmentos de Péptidos/química , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Factores de Transcripción/metabolismo , Tropismo Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química
8.
J Neurovirol ; 22(4): 403-15, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27056720

RESUMEN

It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.


Asunto(s)
Sistema Nervioso Central/virología , Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Patógeno/inmunología , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética , Efecto Espectador/genética , Efecto Espectador/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular/inmunología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/patología , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Monocitos/inmunología , Monocitos/patología , Monocitos/virología , Neuronas/inmunología , Neuronas/patología , Neuronas/virología , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/patología , Linfocitos T/virología , Replicación Viral , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/inmunología
9.
Int J Mol Sci ; 17(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294916

RESUMEN

The blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3⁺ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB.


Asunto(s)
Analgésicos Opioides/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Morfina/farmacología , Analgésicos Opioides/efectos adversos , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/metabolismo , Adhesión Celular , Moléculas de Adhesión Celular/genética , Línea Celular , Movimiento Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Humanos , Morfina/efectos adversos
10.
Virol J ; 11: 92, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24886416

RESUMEN

BACKGROUND: HIV-1 gene expression is driven by the long terminal repeat (LTR), which contains many binding sites shown to interact with an array of host and viral factors. Selective pressures within the host as well as the low fidelity of reverse transcriptase lead to changes in the relative prevalence of genetic variants within the HIV-1 genome, including the LTR, resulting in viral quasispecies that can be differentially regulated and can potentially establish niches within specific cell types and tissues. METHODS: Utilizing flow cytometry and electromobility shift assays, specific single-nucleotide sequence polymorphisms (SNPs) were shown to alter both the phenotype of LTR-driven transcription and reactivation. Additional studies also demonstrated differential loading of transcription factors to probes derived from the double-variant LTR as compared to probes from the wild type. RESULTS: This study has identified specific SNPs within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3 T, C-to-T change at position 3, and 5 T, C-to-T change at position 5 of the binding site, respectively) that alter LTR-driven gene transcription and may alter the course of viral latency and reactivation. The HIV-1 LAI LTRs containing the SNPs of interest were coupled to a plasmid encoding green fluorescent protein (GFP), and polyclonal HIV-1 LTR-GFP stable cell lines utilizing bone marrow progenitor, T, and monocytic cell lines were constructed and utilized to explore the LTR phenotype associated with these genotypic changes. CONCLUSIONS: Although the 3 T and 5 T SNPs have been shown to be low-affinity binding sites, the fact that they can still result in effective HIV-1 LTR-driven gene expression, particularly within the TF-1 cell line, has suggested that the low binding site affinities associated with the 3 T C/EBP site I and 5 T Sp site III are potentially compensated for by the interaction of nuclear factor-κB with its corresponding binding sites under selected physiological and cellular conditions. Additionally, tumor necrosis factor-α and Tat can enhance basal transcription of each SNP-specific HIV-1 LTR; however, differential regulation of the LTR is both SNP- and cell type-specific.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , Polimorfismo de Nucleótido Simple , Factor de Transcripción Sp1/metabolismo , Línea Celular , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , VIH-1/fisiología , Humanos , Unión Proteica , Transcripción Genética , Activación Viral
11.
Curr Opin HIV AIDS ; 19(3): 150-156, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547339

RESUMEN

PURPOSE OF REVIEW: The leading gene editing strategy for a human immunodeficiency virus type 1 (HIV-1) cure involves the delivery of SaCas9 and two guide RNAs (gRNAs) in an adeno-associated viral (AAV) vector. As a dual-component system, CRISPR is targeted to a genetic locus through the choice of a Cas effector and gRNA protospacer design pair. As CRISPR research has expanded in recent years, these components have been investigated for utilization in cure strategies, which will be discussed in this article. RECENT FINDINGS: Type II SpCas9 and SaCas9 have been the leading Cas effectors across gene editing therapeutics to date. Additionally, extensive research has expanded the potential to multiplex gRNAs and target them effectively to the highly genetically diverse HIV-1 provirus. More recently, the Type V family of Cas12 effectors opens a new opportunity to use a smaller Cas protein for packaging into an AAV vector with multiplexed gRNAs. SUMMARY: In understanding the individual components of a CRISPR/Cas therapeutic cure for HIV-1, it is important to know that the currently used strategies can be improved upon. Future areas will include alternative smaller Cas effectors, multiplexed gRNAs designs, and/or alternative delivery modalities.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Edición Génica , VIH-1/genética , Terapia Genética
12.
Mol Neurobiol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38514527

RESUMEN

HIV-1-associated neurocognitive disorders (HAND) are a major comorbidity of HIV-1 infection, marked by impairment of executive function varying in severity. HAND affects nearly half of people living with HIV (PLWH), with mild forms predominating since the use of anti-retroviral therapies (ART). The HIV-1 transactivator of transcription (Tat) protein is found in the cerebrospinal fluid of patients adherent to ART, and its administration or expression in animals causes cognitive symptoms. Studies of Tat interaction with the N-methyl-D-aspartate receptor (NMDAR) suggest that glutamate toxicity contributes to Tat-induced impairments. To identify changes in regional glutamatergic circuitry underlying cognitive impairment, we injected recombinant Tat86 or saline to medial prefrontal cortex (mPFC) of male Sprague-Dawley rats. Rats were assessed with behavioral tasks that involve intact functioning of mPFC including the novel object recognition (NOR), spatial object recognition (SOR), and temporal order (TO) tasks at 1 and 2 postoperative weeks. Following testing, mPFC tissue was collected and analyzed by RT-PCR. Results showed Tat86 in mPFC-induced impairment in SOR, and upregulation of Grin1 and Grin2a transcripts. To further understand the mechanism of Tat toxicity, we assessed the effects of full-length Tat101 on gene expression in mPFC by RNA sequencing. The results of RNAseq suggest that glutamatergic effects of Tat86 are maintained with Tat101, as Grin2a was upregulated in Tat101-injected tissue, among other differentially expressed genes. Spatial learning and memory impairment and Grin2a upregulation suggest that exposure to Tat protein drives adaptation in mPFC, altering the function of circuitry supporting spatial learning and memory.

13.
Front Microbiol ; 15: 1393974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812680

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.

14.
J Neurovirol ; 19(3): 239-53, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23728617

RESUMEN

Extracellular human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a pleiotropic protein accomplishing several functions within the viral life cycle. While Vpr has been described extensively as an intracellular protein, very little is known about its role as an extracellular protein. In fact, HIV-1 Vpr has been detected in the blood, serum, and cerebrospinal fluid of HIV-1-infected patients, with concentrations increasingly higher in late-stage disease. To determine the role exogenous Vpr plays in HIV-associated central nervous system dysfunction, primary human fetal astrocytes were exposed to recombinant Vpr and a time- and dose-dependent decrease was demonstrated in two fundamental intracellular metabolites (adenosine-5'-triphosphate (ATP) and glutathione (GSH)). Additionally, exposure to exogenous Vpr led to increased caspase activity and secretion of proinflammatory cytokines IL-6 and IL-8 and chemoattractants, monocyte chemotactic protein-1, and migration inhibition factor. Extracellular Vpr also dampened the glycolytic pathway through impairment of glyceraldehyde 3-phosphate dehydrogenase activity, causing a decline in the levels of ATP. The reduction in intracellular ATP increased reactive oxygen species buildup, decreasing GSH concentrations, which affected several genes in the oxidative stress pathway. In addition, exposure of the SK-N-SH neuroblastoma cell line to conditioned medium from exogenous Vpr-treated astrocytes decreased synthesis of GSH, leading to their apoptosis. These observations point to a role that Vpr plays in altering astrocytic metabolism and indirectly affecting neuronal survival. We propose a model that may explain some of the neurological damage and therefore neurocognitive impairment observed during the course of HIV-1 disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/farmacología , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/virología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/virología , Caspasas/genética , Caspasas/metabolismo , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Medios de Cultivo Condicionados/farmacología , Feto , Regulación de la Expresión Génica , Glutatión/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/virología , Estrés Oxidativo , Cultivo Primario de Células , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
15.
Front Genome Ed ; 5: 1248982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239625

RESUMEN

Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability. Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential. Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV. Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors.

16.
Acta Neuropathol Commun ; 11(1): 42, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915214

RESUMEN

In the contexts of aging, injury, or neuroinflammation, activated microglia signaling with TNF-α, IL-1α, and C1q induces a neurotoxic astrocytic phenotype, classified as A1, A1-like, or neuroinflammatory reactive astrocytes. In contrast to typical astrocytes, which promote neuronal survival, support synapses, and maintain blood-brain barrier integrity, these reactive astrocytes downregulate supportive functions and begin to secrete neurotoxic factors, complement components like C3, and chemokines like CXCL10, which may facilitate recruitment of immune cells across the BBB into the CNS. The proportion of pro-inflammatory reactive astrocytes increases with age through associated microglia activation, and these pro-inflammatory reactive astrocytes are particularly abundant in neurodegenerative disorders. As the identification of astrocyte phenotypes progress, their molecular and cellular effects are characterized in a growing array of neuropathologies.


Asunto(s)
Astrocitos , Síndromes de Neurotoxicidad , Humanos , Astrocitos/metabolismo , Microglía/metabolismo , Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/metabolismo , Quimiocinas/metabolismo , Síndromes de Neurotoxicidad/patología
17.
Front Genome Ed ; 5: 1101483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124096

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing system has been shown to be effective at inhibiting human immunodeficiency virus type 1 (HIV-1). Studies have not consistently used a trackable dual reporter system to determine what cells received the Cas9/gRNA to determine the overall knockdown of HIV. Some studies have used stably transduced cells under drug selection to accomplish this goal. Here a two-color system was used that allows tracking of viral protein expression and which cells received the CRISPR/Cas9 system. These experiments ensured that each gRNA used was a perfect match to the intended target to remove this variable. The data showed that gRNAs targeting the transactivation response element (TAR) region or other highly conserved regions of the HIV-1 genome were effective at stopping viral gene expression, with multiple assays demonstrating greater than 95 percent reduction. Conversely, gRNAs targeting conserved sites of the 5' portion of the U3 region were largely ineffective, demonstrating that the location of edits in the long terminal repeat (LTR) matter with respect to function. In addition, it was observed that a gRNA targeting Tat was effective in a T-cell model of HIV-1 latency. Taken together, these studies demonstrated gRNAs designed to highly conserved functional regions have near 100% efficacy in vitro in cells known to have received the Cas9/gRNA pair.

18.
Biomedicines ; 11(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36672628

RESUMEN

In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.

19.
J Gen Virol ; 93(Pt 6): 1151-1172, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22422068

RESUMEN

Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/virología , VIH-1/metabolismo , Proteínas Virales/metabolismo , Animales , Fármacos Anti-VIH/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , Humanos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Replicación Viral
20.
Brain Sci ; 12(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35884695

RESUMEN

The blood-brain barrier (BBB) mediates cellular and molecular passage between the central nervous system (CNS) and peripheral circulation. Compromised BBB integrity has been linked to neurocognitive deficits in multiple diseases and various infections, including those associated with HIV-1 infection. Understanding the impact of exposure to pharmaceuticals, such as those utilized for pain management by patients suffering from CNS disease, on BBB regulation and function is clinically important. In this study, we modelled two different BBB systems; a primary human co-culture and a cell line monoculture. These systems were both exposed to three daily repeat doses of morphine and examined for alterations to BBB integrity via permeability, PBMC transmigration, and chemokine gradient changes. We did not find any significant changes to either BBB system with repeat morphine dosing, suggesting that repeat morphine exposure may not play a significant role in BBB changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA