Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurosci ; 34(45): 14961-72, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25378162

RESUMEN

During development, dendrites migrate to their correct locations in response to environmental cues. The mechanisms of dendritic guidance are poorly understood. Recent work has shown that the Drosophila olfactory map is initially formed by the spatial segregation of the projection neuron (PN) dendrites in the developing antennal lobe (AL). We report here that between 16 and 30 h after puparium formation, the PN dendrites undergo dramatic rotational reordering to achieve their final glomerular positions. During this period, a novel set of AL-extrinsic neurons express high levels of the Wnt5 protein and are tightly associated with the dorsolateral edge of the AL. Wnt5 forms a dorsolateral-high to ventromedial-low pattern in the antennal lobe neuropil. Loss of Wnt5 prevents the ventral targeting of the dendrites, whereas Wnt5 overexpression disrupts dendritic patterning. We find that Drl/Ryk, a known Wnt5 receptor, is expressed in a dorsolateral-to-ventromedial (DL > VM) gradient by the PN dendrites. Loss of Drl in the PNs results in the aberrant ventromedial targeting of the dendrites, a defect that is suppressed by reduction in Wnt5 gene dosage. Conversely, overexpression of Drl in the PNs results in the dorsolateral targeting of their dendrites, an effect that requires Drl's cytoplasmic domain. We propose that Wnt5 acts as a repulsive guidance cue for the PN dendrites, whereas Drl signaling in the dendrites inhibits Wnt5 signaling. In this way, the precise expression patterns of Wnt5 and Drl orient the PN dendrites allowing them to target their final glomerular positions.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Neurogénesis , Neuronas Receptoras Olfatorias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Antenas de Artrópodos/crecimiento & desarrollo , Antenas de Artrópodos/inervación , Dendritas/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurópilo/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Wnt/genética , Vía de Señalización Wnt
2.
J Neurosci ; 31(2): 492-500, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228159

RESUMEN

Duchenne muscular dystrophy is caused by mutations in the Dystrophin gene and is characterized by muscle degeneration and the occurrence of mental deficits in a significant number of patients. Although Dystrophin and its closely related ortholog Utrophin are present at a variety of synapses, little is known about their roles in the nervous system. Previously, we reported that absence of postsynaptic Dystrophin from the Drosophila neuromuscular junction (NMJ) disrupts synaptic homeostasis, resulting in increased stimulus-evoked neurotransmitter release. Here, we show that RhoGAP crossveinless-c (cv-c), a negative regulator of Rho GTPase signaling pathways, genetically interacts with Dystrophin. Electrophysiological characterization of the cv-c-deficient NMJ and the use of presynaptic- and postsynaptic-specific transgenic rescue versus RNA interference reveal that the absence of postsynaptic cv-c results in elevated evoked neurotransmitter release. The cv-c mutant NMJ exhibits an increased number of presynaptic neurotransmitter release sites and higher probability of vesicle release without apparent changes in postsynaptic glutamate receptor numbers or function. Moreover, we find that decreasing expression of the Rho GTPase Cdc42 suppresses the high neurotransmitter release in the cv-c and Dystrophin mutants, suggesting that Cdc42 is a substrate of Cv-c. These results indicate that Dystrophin and the Rho GTPase signaling pathway likely interact at the postsynaptic side of the NMJ to maintain synaptic homeostasis. The absence of this postsynaptic pathway results in presynaptic structural and functional alterations, suggesting that retrograde signaling mechanisms are affected.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Distrofina/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Distrofina/genética , Proteínas Activadoras de GTPasa/genética , Homeostasis , Larva , Potenciales Postsinápticos Miniatura , Mutación , Neurotransmisores/metabolismo , Interferencia de ARN , Receptores de Glutamato/metabolismo , Transducción de Señal , Alas de Animales/metabolismo , Proteína de Unión al GTP cdc42/biosíntesis
3.
Science ; 377(6610): 1077-1085, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35951677

RESUMEN

Mammalian genomes have multiple enhancers spanning an ultralong distance (>megabases) to modulate important genes, but it is unclear how these enhancers coordinate to achieve this task. We combine multiplexed CRISPRi screening with machine learning to define quantitative enhancer-enhancer interactions. We find that the ultralong distance enhancer network has a nested multilayer architecture that confers functional robustness of gene expression. Experimental characterization reveals that enhancer epistasis is maintained by three-dimensional chromosomal interactions and BRD4 condensation. Machine learning prediction of synergistic enhancers provides an effective strategy to identify noncoding variant pairs associated with pathogenic genes in diseases beyond genome-wide association studies analysis. Our work unveils nested epistasis enhancer networks, which can better explain enhancer functions within cells and in diseases.


Asunto(s)
Enfermedad , Elementos de Facilitación Genéticos , Epistasis Genética , Aprendizaje Automático , Proteínas de Ciclo Celular , Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Células K562 , Proteínas Nucleares/genética , Factores de Transcripción/genética
4.
Nat Neurosci ; 10(11): 1423-32, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17934456

RESUMEN

Numerous studies have shown that ingrowing olfactory axons exert powerful inductive influences on olfactory map development. From an overexpression screen, we have identified wnt5 as a potent organizer of the olfactory map in Drosophila melanogaster. Loss of wnt5 resulted in severe derangement of the glomerular pattern, whereas overexpression of wnt5 resulted in the formation of ectopic midline glomeruli. Cell type-specific cDNA rescue and mosaic experiments showed that wnt5 functions in olfactory neurons. Mutation of the derailed (drl) gene, encoding a receptor for Wnt5, resulted in derangement of the glomerular map, ectopic midline glomeruli and the accumulation of Wnt5 at the midline. We show here that drl functions in glial cells, where it acts upstream of wnt5 to modulate its function in glomerular patterning. Our findings establish wnt5 as an anterograde signal that is expressed by olfactory axons and demonstrate a previously unappreciated, yet powerful, role for glia in patterning the Drosophila olfactory map.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Órganos de los Sentidos/embriología , Órganos de los Sentidos/metabolismo , Proteínas Wnt/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Mutación/fisiología
5.
PLoS One ; 16(4): e0249748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33848304

RESUMEN

A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.


Asunto(s)
Ganglios Espinales/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/metabolismo , Células Receptoras Sensoriales/metabolismo , Vía de Señalización Wnt , Animales , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Regulación de la Expresión Génica , Humanos , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Wistar , Nervio Ciático/patología , Células Receptoras Sensoriales/patología
6.
Cell Rep ; 37(3): 109834, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686333

RESUMEN

WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Células Sf9 , Relación Estructura-Actividad , Proteínas Wnt/genética
7.
J Neurosci ; 28(14): 3781-9, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385336

RESUMEN

The congenital muscular dystrophies present in infancy with muscle weakness and are often associated with mental retardation. Many of these inherited disorders share a common etiology: defective O-glycosylation of alpha-dystroglycan, a component of the dystrophin complex. Protein-O-mannosyl transferase 1 (POMT1) is the first enzyme required for the glycosylation of alpha-dystroglycan, and mutations in the POMT1 gene can lead to both Walker-Warburg syndrome (WWS) and limb girdle muscular dystrophy type 2K (LGMD2K). WWS is associated with severe mental retardation and major structural abnormalities in the brain; however, LGMD2K patients display a more mild retardation with no obvious structural defects in the brain. In a screen for synaptic mutants in Drosophila, we identified mutations in the Drosophila ortholog of POMT1, dPOMT1. Because synaptic defects are a plausible cause of mental retardation, we investigated the molecular and physiological defects associated with loss of dPOMT1 in Drosophila. In dPOMT1 mutants, there is a decrease in the efficacy of synaptic transmission and a change in the subunit composition of the postsynaptic glutamate receptors at the neuromuscular junction. We demonstrate that dPOMT1 is required to glycosylate the Drosophila dystroglycan ortholog Dg in vivo, and that this is the likely cause of these synaptic defects because (1) mutations in Dg lead to similar synaptic defects and (2) genetic interaction studies suggest that dPOMT1 and Dg function in the same pathway. These results are consistent with the model that dPOMT1-dependent glycosylation of Dg is necessary for proper synaptic function and raise the possibility that similar synaptic defects occur in the congenital muscular dystrophies.


Asunto(s)
Manosiltransferasas/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Mutación , Unión Neuromuscular/fisiopatología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Anestésicos Locales/farmacología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila , Distroglicanos/metabolismo , Regulación de la Expresión Génica/genética , Glicosilación , Receptores de Glutamato/fisiología , Tetrodotoxina/farmacología
8.
J Neurosci ; 28(19): 5105-14, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463264

RESUMEN

The Dystrophin protein is encoded by a gene that, when mutated in humans, can cause Duchenne muscular dystrophy, a disease characterized by progressive muscle wasting. A number of Duchenne patients also exhibit poorly understood mental retardation, likely associated with loss of a brain-specific isoform. Furthermore, although Dystrophin isoforms and the related Utrophin protein have long been known to localize at synapses, their functions remain essentially unknown. In Drosophila, we find that the CNS-specific Dp186 isoform localizes to the embryonic and larval neuropiles, regions rich in synaptic contacts. In the absence of Dp186, evoked but not spontaneous presynaptic release is significantly enhanced. Increased presynaptic release can be fully rescued to wild-type levels by expression of a Dp186 transgene in the postsynaptic motoneuron, indicating that Dp186 likely regulates a retrograde signaling pathway. Potentiation of synaptic currents in the mutant also occurs when cholinergic transmission is inhibited or in the absence of Glass Bottom Boat (Gbb) or Wishful Thinking (Wit), a TGF-beta ligand and receptor, respectively, both previously implicated in synaptic retrograde signaling. These results are consistent with the possibility that Dp186 modulates other non-Gbb/Wit-dependent retrograde signaling pathways required to maintain normal synaptic physiology.


Asunto(s)
Sistema Nervioso Central/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/fisiología , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Distrofina/deficiencia , Distrofina/genética , Conductividad Eléctrica , Embrión no Mamífero/metabolismo , Larva/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Mutación , Neurópilo/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factor de Crecimiento Transformador beta/metabolismo
9.
PLoS Biol ; 4(11): e348, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17032066

RESUMEN

The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF) receptor, and Jun N-terminal kinase (JNK) signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF)-Breathless (FGF receptor) axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiología , Neuronas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Axones/metabolismo , Proteínas Dishevelled , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Inmunohistoquímica , MAP Quinasa Quinasa 4/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Fenotipo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transgenes , Proteínas Wnt/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1579-1591, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30904609

RESUMEN

Evolutionarily conserved homeostatic systems have been shown to modulate synaptic efficiency at the neuromuscular junctions of organisms. While advances have been made in identifying molecules that function presynaptically during homeostasis, limited information is currently available on how postsynaptic alterations affect presynaptic function. We previously identified a role for postsynaptic Dystrophin in the maintenance of evoked neurotransmitter release. We herein demonstrated that Dystrobrevin, a member of the Dystrophin Glycoprotein Complex, was delocalized from the postsynaptic region in the absence of Dystrophin. A newly-generated Dystrobrevin mutant showed elevated evoked neurotransmitter release, increased bouton numbers, and a readily releasable pool of synaptic vesicles without changes in the function or numbers of postsynaptic glutamate receptors. In addition, we provide evidence to show that the highly conserved Cdc42 Rho GTPase plays a key role in the postsynaptic Dystrophin/Dystrobrevin pathway for synaptic homeostasis. The present results give novel insights into the synaptic deficits underlying Duchenne Muscular Dystrophy affected by a dysfunctional Dystrophin Glycoprotein complex.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Asociadas a la Distrofina/genética , Distrofina/genética , Unión Neuromuscular/genética , Proteína de Unión al GTP cdc42/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/deficiencia , Proteínas Asociadas a la Distrofina/metabolismo , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Potenciales Sinápticos/genética , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
11.
Brain Res ; 1712: 158-166, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711401

RESUMEN

The Drosophila olfactory system provides an excellent model to elucidate the neural circuits that control behaviors elicited by environmental stimuli. Despite significant progress in defining olfactory circuit components and their connectivity, little is known about the mechanisms that transfer the information from the primary antennal olfactory receptor neurons to the higher order brain centers. Here, we show that the Dystrophin Dp186 isoform is required in the olfactory system circuit for olfactory functions. Using two-photon calcium imaging, we found the reduction of calcium influx in olfactory receptor neurons (ORNs) and also the defect of GABAA mediated inhibitory input in the projection neurons (PNs) in Dp186 mutation. Moreover, the Dp186 mutant flies which display a decreased odor avoidance behavior were rescued by Dp186 restoration in the Drosophila olfactory neurons in either the presynaptic ORNs or the postsynaptic PNs. Therefore, these results revealed a role for Dystrophin, Dp 186 isoform in gain control of the olfactory synapse via the modulation of excitatory and inhibitory synaptic inputs to olfactory projection neurons.


Asunto(s)
Distrofina/metabolismo , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/fisiología , Femenino , Interneuronas/metabolismo , Masculino , Odorantes , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/fisiología
12.
Mech Dev ; 124(7-8): 617-30, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17543506

RESUMEN

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Distrofina/metabolismo , Músculos/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Distrofina/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculos/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmisión Sináptica
13.
J Neurosci ; 26(1): 333-44, 2006 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16399704

RESUMEN

Mutations in the human dystrophin gene cause the Duchenne and Becker muscular dystrophies. The Dystrophin protein provides a structural link between the muscle cytoskeleton and extracellular matrix to maintain muscle integrity. Recently, Dystrophin has also been found to act as a scaffold for several signaling molecules, but the roles of dystrophin-mediated signaling pathways remain unknown. To further our understanding of this aspect of the function of dystrophin, we have generated Drosophila mutants that lack the large dystrophin isoforms and analyzed their role in synapse function at the neuromuscular junction. In expression and rescue studies, we show that lack of the large dystrophin isoforms in the postsynaptic muscle cell leads to elevated evoked neurotransmitter release from the presynaptic apparatus. Overall synapse size, the size of the readily releasable vesicle pool as assessed with hypertonic shock, and the number of presynaptic neurotransmitter release sites (active zones) are not changed in the mutants. Short-term synaptic facilitation of evoked transmitter release is decreased in the mutants, suggesting that the absence of dystrophin results in increased probability of release. Absence of the large dystrophin isoforms does not lead to changes in muscle cell morphology or alterations in the postsynaptic electrical response to spontaneously released neurotransmitter. Therefore, postsynaptic glutamate receptor function does not appear to be affected. Our results indicate that the postsynaptically localized scaffolding protein Dystrophin is required for appropriate control of neuromuscular synaptic homeostasis.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Distrofina/biosíntesis , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Animales , Transporte Axonal/fisiología , Drosophila , Proteínas de Drosophila/genética , Distrofina/genética , Mutación , Unión Neuromuscular/genética , Neurotransmisores/genética
14.
Genetics ; 169(2): 795-806, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15545651

RESUMEN

Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2-8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4.


Asunto(s)
Daño del ADN , ADN Ligasas/fisiología , Reparación del ADN , Elementos Transponibles de ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Proteínas del Huevo/fisiología , Proteínas de Insectos/fisiología , Alelos , Animales , Cruzamientos Genéticos , ADN Helicasas , Femenino , Eliminación de Gen , Genes de Insecto , Masculino , Mutación , Tasa de Supervivencia , Cromosoma X
15.
Cell Death Dis ; 7(11): e2479, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882948

RESUMEN

The development of blood and immune cells requires strict control by various signaling pathways in order to regulate self-renewal, differentiation and apoptosis in stem and progenitor cells. Recent evidence indicates critical roles for the canonical and non-canonical Wnt pathways in hematopoiesis. The non-canonical Wnt pathway is important for establishment of cell polarity and cell migration and regulates apoptosis in the thymus. We here investigate the role of the non-canonical Wnt receptor Ryk in hematopoiesis and lymphoid development. We show that there are dynamic changes in Ryk expression during development and in different hematopoietic tissues. Functionally, Ryk regulates NK cell development in a temporal fashion. Moreover, Ryk-deficient mice show diminished, but not absent self-renewal of hematopoietic stem cells (HSC), via effects on mildly increased proliferation and apoptosis. Thus, Ryk deficiency in HSCs from fetal liver reduces their quiescence, leading to proliferation-induced apoptosis and decreased self-renewal.


Asunto(s)
Apoptosis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Apoptosis/genética , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Asesinas Naturales/metabolismo , Hígado/citología , Hígado/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Tirosina Quinasas Receptoras/genética , Linfocitos T/metabolismo
16.
Cell Rep ; 11(12): 1953-65, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095367

RESUMEN

To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteínas de Drosophila/genética , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Sinapsis/genética , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Animales , Animales Modificados Genéticamente , Drosophila , Aprendizaje/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Sinapsis/fisiología
17.
Cell Rep ; 11(8): 1293-304, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25981040

RESUMEN

In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB) axons, whose α and ß branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed), which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL's ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Cuerpos Pedunculados/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Wnt/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo
18.
Gene Expr Patterns ; 4(2): 153-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15161095

RESUMEN

Mutations in genes encoding proteins of the human dystrophin-associated glycoprotein complex (DGC) cause the Duchenne, Becker and limb-girdle muscular dystrophies. Subsets of the DGC proteins form tissue-specific complexes which are thought to play structural and signaling roles in the muscle and at the neuromuscular junction. Furthermore, mutations in the dystrophin gene that lead to Duchenne muscular dystrophy are frequently associated with cognitive and behavioral deficits, suggesting a role for dystrophin in the nervous system. Despite significant progress over the past decade, many fundamental questions about the roles played by dystrophin and the other DGC proteins in the muscle and peripheral and central nervous systems remain to be answered. Mammalian models of DGC gene function are complicated by the existence of fully or partially redundant genes whose functions can mask effects of the inactivation of a given DGC gene. The genome of the fruitfly Drosophila melanogaster encodes a single ortholog of the majority of the mammalian DGC protein subclasses, thus potentially simplifying their functional analysis. We report here the embryonic mRNA expression patterns of the individual DGC orthologs. We find that they are predominantly expressed in the nervous system and in muscle. Dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 1, and all three sarcoglycan orthologs are found in the brain and the ventral nerve cord, while dystrophin, dystrobrevin-like, dystroglycan-like, syntrophin-like 2, sarcoglycan alpha and sarcoglycan delta are expressed in distinct and sometimes overlapping domains of mesoderm-derived tissues, i.e. muscles of the body wall and around the gut.


Asunto(s)
Drosophila melanogaster/genética , Distrofina/genética , Expresión Génica/fisiología , Glicoproteínas de Membrana/genética , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Distrofina/metabolismo , Perfilación de la Expresión Génica , Hibridación in Situ , Glicoproteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo
19.
Mol Neurobiol ; 49(1): 303-15, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23990374

RESUMEN

The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.


Asunto(s)
Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/fisiología , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , Animales , Movimiento Celular/fisiología , Humanos
20.
Mol Cell Biol ; 33(20): 4116-27, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23979591

RESUMEN

Ryk pseudokinase receptors act as important transducers of Wnt signals, particularly in the nervous system. Little is known, however, of their interactions at the cell surface. Here, we show that a Drosophila Ryk family member, DERAILED (DRL), forms cell surface homodimers and can also heterodimerize with the two other fly Ryks, DERAILED-2 and DOUGHNUT ON 2. DERAILED homodimerization levels increase significantly in the presence of its ligand, WNT5. In addition, DERAILED displays ligand-independent dimerization mediated by a motif in its transmembrane domain. Increased dimerization of DRL upon WNT5 binding or upon the replacement of DERAILED's extracellular domain with the immunoglobulin Fc domain results in an increased recruitment of the Src family kinase SRC64B, a previously identified downstream pathway effector. Formation of the SRC64B/DERAILED complex requires SRC64B's SH2 domain and DERAILED's PDZ-binding motif. Mutations in DERAILED's inactive tyrosine kinase-homologous domain also disrupt the formation of DERAILED/SRC64B complexes, indicating that its conformation is likely important in facilitating its interaction with SRC64B. Finally, we show that DERAILED's function during embryonic axon guidance requires its Wnt-binding domain, a putative juxtamembrane extracellular tetrabasic cleavage site, and the PDZ-binding domain, indicating that DERAILED's activation involves a complex set of events including both dimerization and proteolytic processing.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA