Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38953933

RESUMEN

PURPOSE: There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS: SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aß)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS: We optimized the protocol for the immobilization of Aß42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aß in arcAß mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION: SPR measurements of small molecules binding to Aß42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.

2.
Mol Psychiatry ; 28(3): 1272-1283, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36447011

RESUMEN

Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Enfermedad de Alzheimer/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo , Tauopatías/metabolismo , Encéfalo/metabolismo
3.
Alzheimers Dement ; 20(4): 2589-2605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38363009

RESUMEN

INTRODUCTION: Synaptic loss is an early prominent feature of Alzheimer's disease (AD). The recently developed novel synaptic vesicle 2A protein (SV2A) PET-tracer UCB-J has shown great promise in tracking synaptic loss in AD. However, there have been discrepancies between the findings and a lack of mechanistic insight. METHODS: Here we report the first extensive pre-clinical validation studies for UCB-J in control (CN; n = 11) and AD (n = 11) brains using a multidimensional approach of post-mortem brain imaging techniques, radioligand binding, and biochemical studies. RESULTS AND DISCUSSION: We demonstrate that UCB-J could target SV2A protein with high specificity and depict synaptic loss at synaptosome levels in AD brain regions compared to CNs. UCB-J showed highest synaptic loss in AD hippocampus followed in descending order by frontal cortex, temporal cortex, parietal cortex, and cerebellum. 3H-UCB-J large brain-section autoradiography and cellular/subcellular fractions binding studies indicated potential off-target interaction with phosphorylated tau (p-tau) species in AD brains, which could have subsequent clinical implications for imaging studies. HIGHLIGHTS: Synaptic positron emission tomography (PET)-tracer UCB-J could target synaptic vesicle 2A protein (SV2A) with high specificity in Alzheimer's disease (AD) and control brains. Synaptic PET-tracer UCB-J could depict synaptic loss at synaptosome levels in AD brain regions compared to control. Potential off-target interaction of UCB-J with phosphorylated tau (p-tau) species at cellular/subcellular levels could have subsequent clinical implications for imaging studies, warranting further investigations.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Vesículas Sinápticas/metabolismo , Cerebelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
4.
Alzheimers Dement ; 20(5): 3429-3441, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574374

RESUMEN

INTRODUCTION: To support clinical trial designs focused on early interventions, our study determined reliable early amyloid-ß (Aß) accumulation based on Centiloids (CL) in pre-dementia populations. METHODS: A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease-Prognostic and Natural History Study (AMYPAD-PNHS) and Insight46 who underwent [18F]flutemetamol, [18F]florbetaben or [18F]florbetapir amyloid-PET were included. A normative strategy was used to define reliable accumulation by estimating the 95th percentile of longitudinal measurements in sub-populations (NPNHS = 101/750, NInsight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision-recall analyses. Accumulation rates were examined using linear mixed-effect models. RESULTS: Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aß-accumulators. Rates of amyloid accumulation were tracer-independent, lower for APOE ε4 non-carriers, and for subjects with higher levels of education. DISCUSSION: Our results support a 12-20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Compuestos de Anilina , Tomografía de Emisión de Positrones , Humanos , Masculino , Femenino , Anciano , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Pronóstico , Persona de Mediana Edad , Estudios Longitudinales , Estilbenos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Benzotiazoles
5.
J Neurochem ; 164(3): 309-324, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931315

RESUMEN

Astrocytes are highly efficient homeostatic glial cells playing a crucial role in optimal brain functioning and homeostasis. Astrocytes respond to changes in brain homoeostasis following central nervous system (CNS) injury/diseased state by a specific defence mechanism called reactive astrogliosis. Recent studies have implicated and placed reactive astrogliosis in the centre of pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. The AD biomarker field is evolving rapidly with new findings providing strong evidence which supports the notion that a reactive astrogliosis is an early event in the time course of AD progression which may precede other pathological hallmarks of AD. Clinical/translational in vivo PET and in vitro postmortem brain imaging studies demonstrated 'a first and second wave' of reactive astrogliosis in AD with distinct close-loop relationships with other pathological biomarkers at different stages of the disease. At the end stages, reactive astrocytes are found to be associated, or in proximity, with amyloid plaque and tau pathological deposits in postmortem AD brains. Several new PET-tracers, which are being in pipeline and validated at a very fast pace for mapping and visualising reactive astrogliosis in the brain, will provide further invaluable mechanistic insights into AD and other non-AD dementia pathologies. The complementary roles of microglia and astrocyte activation in AD progression, along with the clinical value of new fluid astrocytes biomarkers in the context of existing biomarkers, are the latest avenue that needs further exploration.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Gliosis/patología , Sistema Nervioso Central , Encéfalo/patología , Astrocitos/fisiología , Biomarcadores
6.
Acta Neuropathol ; 145(3): 325-333, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36611124

RESUMEN

The Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-ß (Aß)], causes dominantly inherited Alzheimer's disease. Here, we report the high-resolution cryo-EM structures of Aß filaments from the frontal cortex of a previously described case (AßPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12-V40 (human Arctic fold A) and E11-G37 (human Arctic fold B). They have a substructure (residues F20-G37) in common with the folds of type I and type II Aß42. When compared to the structures of wild-type Aß42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aß molecules and promote filament formation. A minority of Aß42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aß filaments with the Arctic mutation from mouse knock-in line AppNL-G-F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL-G-F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL-G-F murine Arctic fold differs from the human Arctic folds, but shares some substructure.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Microscopía por Crioelectrón , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Mutación/genética , Ratones Transgénicos
7.
Alzheimers Dement ; 19(11): 4896-4907, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37052206

RESUMEN

INTRODUCTION: ß-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-ß (Αß) pathology is unclear. METHODS: We investigated the association of plasma ß-synuclein levels with [18F] flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-Aß+ n = 18, MCI- Aß- n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). RESULTS: Plasma ß-synuclein levels were higher in Aß+ (AD dementia, MCI-Aß+) than in Aß- subjects (non-AD dementias, MCI-Aß-) with good discrimination of Aß+ from Aß- subjects and prediction of Aß status in MCI individuals. A positive correlation between plasma ß-synuclein and Aß PET was observed in multiple cortical regions across all lobes. DISCUSSION: Plasma ß-synuclein demonstrated discriminative properties for Aß PET positive and negative subjects. Our data underline that ß-synuclein is not a direct marker of Aß pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. HIGHLIGHTS: Blood and CSF ß-synuclein levels are higher in Aß+ than in Aß- subjects. Blood ß-synuclein level correlates with amyloid PET positivity in multiple regions. Blood ß-synuclein predicts Aß status in MCI individuals.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Sinucleína beta , Encéfalo/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones/métodos , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Biomarcadores
8.
Mol Psychiatry ; 26(10): 5888-5898, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34593971

RESUMEN

For early detection of Alzheimer's disease, it is important to find biomarkers with predictive value for disease progression and clinical manifestations, such as cognitive decline. Individuals can now be profiled based on their biomarker status for Aß42 (A) or tau (T) deposition and neurodegeneration (N). The aim of this study was to compare the cerebrospinal fluid (CSF) and imaging (PET/MR) biomarkers in each ATN category and to assess their ability to predict longitudinal cognitive decline. A subset of 282 patients, who had had at the same time PET investigations with amyloid-ß and tau tracers, CSF sampling, and structural MRI (18% within 13 months), was selected from the ADNI dataset. The participants were grouped by clinical diagnosis at that time: cognitively normal, subjective memory concern, early or late mild cognitive impairment, or AD. Agreement between CSF (amyloid-ß-1-42(A), phosphorylated-Tau181(T), total-Tau(N)), and imaging (amyloid-ß PET (florbetaben and florbetapir)(A), tau PET (flortaucipir)(T), hippocampal volume (MRI)(N)) positivity in ATN was assessed with Cohen's Kappa. Linear mixed-effects models were used to predict decline in the episodic memory. There was moderate agreement between PET and CSF for A biomarkers (Kappa = 0.39-0.71), while only fair agreement for T biomarkers (Kappa ≤ 0.40, except AD) and discordance for N biomarkers across all groups (Kappa ≤ 0.14) was found. Baseline PET tau predicted longitudinal decline in episodic memory irrespective of CSF p-Tau181 positivity (p ≤ 0.02). Baseline PET tau and amyloid-ß predicted decline in episodic memory (p ≤ 0.0001), but isolated PET amyloid-ß did not. Isolated PET Tau positivity was only observed in 2 participants (0.71% of the sample). While results for amyloid-ß were similar using CSF or imaging, CSF and imaging results for tau and neurodegeneration were not interchangeable. PET tau positivity was superior to CSF p-Tau181 and PET amyloid-ß in predicting cognitive decline in the AD continuum within 3 years of follow-up.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Fragmentos de Péptidos , Tomografía de Emisión de Positrones , Proteínas tau
9.
Mol Psychiatry ; 26(10): 5864-5874, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303945

RESUMEN

Mismatch between CSF and PET amyloid-ß biomarkers occurs in up to ≈20% of preclinical/prodromal Alzheimer's disease individuals. Factors underlying mismatching results remain unclear. In this study we hypothesized that CSF/PET discordance provides unique biological/clinical information. To test this hypothesis, we investigated non-demented and demented participants with CSF amyloid-ß42 and [18F]Florbetapir PET assessments at baseline (n = 867) and at 2-year follow-up (n = 289). Longitudinal trajectories of amyloid-ß positivity were tracked simultaneously for CSF and PET biomarkers. In the longitudinal cohort (n = 289), we found that participants with normal CSF/PET amyloid-ß biomarkers progressed more frequently toward CSF/PET discordance than to full CSF/PET positivity (χ2(1) = 5.40; p < 0.05). Progression to CSF+/PET+ status was ten times more frequent in cases with discordant biomarkers, as compared to csf-/pet- cases (χ2(1) = 18.86; p < 0.001). Compared to the CSF+/pet- group, the csf-/PET+ group had lower APOE-ε4ε4 prevalence (χ2(6) = 197; p < 0.001; n = 867) and slower rate of brain amyloid-ß accumulation (F(3,600) = 12.76; p < 0.001; n = 608). These results demonstrate that biomarker discordance is a typical stage in the natural history of amyloid-ß accumulation, with CSF or PET becoming abnormal first and not concurrently. Therefore, biomarker discordance allows for identification of individuals with elevated risk of progression toward fully abnormal amyloid-ß biomarkers, with subsequent risk of neurodegeneration and cognitive decline. Our results also suggest that there are two alternative pathways ("CSF-first" vs. "PET-first") toward established amyloid-ß pathology, characterized by different genetic profiles and rates of amyloid-ß accumulation. In conclusion, CSF and PET amyloid-ß biomarkers provide distinct information, with potential implications for their use as biomarkers in clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Biomarcadores , Humanos , Fragmentos de Péptidos , Tomografía de Emisión de Positrones , Proteínas tau
10.
Mol Psychiatry ; 26(10): 5875-5887, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32616831

RESUMEN

Cross-sectional studies have indicated potential for positron emission tomography (PET) in imaging tau pathology in Alzheimer's disease (AD); however, its prognostic utility remains unproven. In a longitudinal, multi-modal, prognostic study of cognitive decline, 20 patients with a clinical biomarker-based diagnosis in the AD spectrum (mild cognitive impairment or dementia and a positive amyloid-beta PET scan) were recruited from the Cognitive Clinic at Karolinska University Hospital. The participants underwent baseline neuropsychological assessment, PET imaging with [18F]THK5317, [11C]PIB and [18F]FDG, magnetic resonance imaging, and in a subgroup cerebrospinal fluid (CSF) sampling, with clinical follow-up after a median 48 months (interquartile range = 32:56). In total, 11 patients declined cognitively over time, while 9 remained cognitively stable. The accuracy of baseline [18F]THK5317 binding in temporal areas was excellent at predicting future cognitive decline (area under the receiver operating curve 0.84-1.00) and the biomarker levels were strongly associated with the rate of cognitive decline (ß estimate -33.67 to -31.02, p < 0.05). The predictive accuracy of the other baseline biomarkers was poor (area under the receiver operating curve 0.58-0.77) and their levels were not associated with the rate of cognitive decline (ß estimate -4.64 to 15.78, p > 0.05). Baseline [18F]THK5317 binding and CSF tau levels were more strongly associated with the MMSE score at follow-up than at baseline (p < 0.05). These findings support a temporal dissociation between tau deposition and cognitive impairment, and suggest that [18F]THK5317 predicts future cognitive decline better than other biomarkers. The use of imaging markers for tau pathology could prove useful for clinical prognostic assessment and screening before inclusion in relevant clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Compuestos de Anilina , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Estudios Transversales , Humanos , Tomografía de Emisión de Positrones , Estudios Prospectivos , Quinolinas , Proteínas tau
11.
Mol Psychiatry ; 26(10): 5833-5847, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33888872

RESUMEN

With reactive astrogliosis being established as one of the hallmarks of Alzheimer's disease (AD), there is high interest in developing novel positron emission tomography (PET) tracers to detect early astrocyte reactivity. BU99008, a novel astrocytic PET ligand targeting imidazoline-2 binding sites (I2BS) on astrocytes, might be a suitable candidate. Here we demonstrate for the first time that BU99008 could visualise reactive astrogliosis in postmortem AD brains and propose a multiple binding site [Super-high-affinity (SH), High-affinity (HA) and Low-affinity (LA)] model for BU99008, I2BS specific ligands (2-BFI and BU224) and deprenyl in AD and control (CN) brains. The proportion (%) and affinities of these sites varied significantly between the BU99008, 2-BFI, BU224 and deprenyl in AD and CN brains. Regional binding studies demonstrated significantly higher 3H-BU99008 binding in AD brain regions compared to CN. Comparative autoradiography studies reinforced these findings, showing higher specific binding for 3H-BU99008 than 3H-Deprenyl in sporadic AD brain compared to CN, implying that they might have different targets. The data clearly shows that BU99008 could detect I2BS expressing reactive astrocytes with good selectivity and specificity and hence be a potential attractive clinical astrocytic PET tracer for gaining further insight into the role of reactive astrogliosis in AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Astrocitos , Sitios de Unión , Encéfalo/diagnóstico por imagen , Humanos , Imidazoles , Indoles , Tomografía de Emisión de Positrones
12.
Mol Psychiatry ; 26(10): 5609-5619, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32581318

RESUMEN

Autosomal-dominant Alzheimer's disease (ADAD) may be associated with atypical amyloid beta deposits in the brain. In vivo amyloid imaging using 11C-Pittsburgh compound B (PiB) tracer has shown differences in binding between brains from ADAD and sporadic Alzheimer's disease (sAD) patients. To gain further insight into the various pathological characteristics of these genetic variants, we performed large frozen hemisphere autoradiography and brain homogenate binding assays with 3H-PiB, 3H-MK6240-3H-THK5117, and 3H-deprenyl for detection of amyloid fibrils, tau depositions, and activated astrocytes, respectively, in two AßPParc mutation carriers, one PSEN1ΔE9 mutation carrier, and three sAD cases. The results were compared with Abeta 40, Abeta 42, AT8, and GFAP immunostaining, respectively, as well as with Congo red and Bielschowsky. PiB showed a very low binding in AßPParc. A high binding was observed in PSEN1ΔE9 and in sAD tissues but with different binding patterns. Comparable 3H-THK5117 and 3H-deprenyl brain homogenate binding was observed for AßPParc, PSEN1ΔE9, and sAD, respectively. Some differences were observed between 3H-MK6240 and 3H-THK5117 in ADAD. A positive correlation between 3H-deprenyl and 3H-THK5117 binding was observed in AßPParc, while no such correlation was found in PSEN1ΔE9 and sAD. Our study demonstrates differences in the properties of the amyloid plaques between two genetic variants of AD and sAD. Despite the lack of measurable amyloid fibrils by PiB in the AßPParc cases, high regional tau and astrocyte binding was observed. The lack of correlation between 3H-deprenyl and 3H-THK5117 binding in PSEN1ΔE9 and sAD in contrast of the positive correlation observed in the AßPParc cases suggest differences in the pathological cascade between variants of AD that warrant further exploration in vivo.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Enfermedad de Alzheimer/genética , Amiloide , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina , Astrocitos/metabolismo , Encéfalo/metabolismo , Humanos , Placa Amiloide , Tomografía de Emisión de Positrones , Presenilina-1 , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Alzheimers Dement ; 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715930

RESUMEN

INTRODUCTION: AMYPAD Diagnostic and Patient Management Study (DPMS) aims to investigate the clinical utility and cost-effectiveness of amyloid-PET in Europe. Here we present participants' baseline features and discuss the representativeness of the cohort. METHODS: Participants with subjective cognitive decline plus (SCD+), mild cognitive impairment (MCI), or dementia were recruited in eight European memory clinics from April 16, 2018, to October 30, 2020, and randomized into three arms: ARM1, early amyloid-PET; ARM2, late amyloid-PET; and ARM3, free-choice. RESULTS: A total of 840 participants (244 SCD+, 341 MCI, and 255 dementia) were enrolled. Sociodemographic/clinical features did not differ significantly among recruiting memory clinics or with previously reported cohorts. The randomization assigned 35% of participants to ARM1, 32% to ARM2, and 33% to ARM3; cognitive stages were distributed equally across the arms. DISCUSSION: The features of AMYPAD-DPMS participants are as expected for a memory clinic population. This ensures the generalizability of future study results.

14.
Radiology ; 298(3): 517-530, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33464184

RESUMEN

The increasing prevalence of dementia worldwide places a high demand on healthcare providers to perform a diagnostic work-up in relatively early stages of the disease, given that the pathologic process usually begins decades before symptoms are evident. Structural imaging is recommended to rule out other disorders and can only provide diagnosis in a late stage with limited specificity. Where PET imaging previously focused on the spatial pattern of hypometabolism, the past decade has seen the development of novel tracers to demonstrate characteristic protein abnormalities. Molecular imaging using PET/SPECT is able to show amyloid and tau deposition in Alzheimer disease and dopamine depletion in parkinsonian disorders starting decades before symptom onset. Novel tracers for neuroinflammation and synaptic density are being developed to further unravel the molecular pathologic characteristics of dementia disorders. In this article, the authors review the current status of established and emerging PET tracers in a diagnostic setting and also their value as prognostic markers in research studies and outcome measures for clinical trials in Alzheimer disease.


Asunto(s)
Demencia/diagnóstico por imagen , Imagen Molecular/métodos , Neuroimagen/métodos , Progresión de la Enfermedad , Diagnóstico Precoz , Humanos , Tomografía de Emisión de Positrones , Pronóstico , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único
15.
Eur J Nucl Med Mol Imaging ; 48(4): 1093-1102, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32970217

RESUMEN

PURPOSE: MK6240 is a second-generation tau PET tracer designed to detect the neurofibrillary tangles in the brains of patients with Alzheimer's disease (AD). The aim of the study was to characterize 3H-MK6240 in AD and control brain tissue and to compare its binding properties with those of first-generation tau PET tracers. METHODS: Saturation binding assays with 3H-MK6240 were carried out in the temporal and parietal cortices of AD brains to determine the maximum number of binding sites (Bmax) and the dissociation constants (Kd) at these sites. Competitive binding assays were carried out between 3H-MK6240 and unlabelled MK6240, AV-1451 (aka T807, flortaucipir) and THK5117, and between 3H-THK5351 and unlabelled MK6240. Regional binding studies with 3H-MK6240 were carried out in homogenates from six AD and seven control brains and, using autoradiography, on large frozen sections from two AD brains and one control brain. RESULTS: The saturation binding assays gave Bmax and Kd values of 59.2 fmol/mg and 0.32 nM in the temporal cortex and 154.7 fmol/mg and 0.15 nM in the parietal cortex. The competitive binding assays revealed two binding sites with affinities in the picomolar and nanomolar range shared by 3H-MK6240 and all the tested unlabelled compounds. There were no binding sites in common between 3H-THK5351 and unlabelled MK6240. Regional binding of 3H-MK6240 was significantly higher in AD brain tissue than in controls. Binding in brain tissue from AD patients with early-onset AD was significantly higher than in brain tissue from patients with late-onset AD. Binding of 3H-MK6240 was not observed in off-target regions. Autoradiography showed high regional cortical binding in the two AD brains and very low binding in the control brain. CONCLUSIONS: 3H-MK6240 has a high binding affinity for tau deposits in AD brain tissue but also has different binding characteristics from those of the first-generation tau tracers. This confirms the complexity of tau tracer binding on tau deposits with different binding affinities for different binding sites.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Autopsia , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Ovillos Neurofibrilares/metabolismo , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
16.
Eur J Nucl Med Mol Imaging ; 48(2): 612-622, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32734458

RESUMEN

PURPOSE: To assess the clinical impact and incremental diagnostic value of 18F-fluorodeoxyglucose (FDG-PET) among memory clinic patients with uncertain diagnosis. METHODS: The study population consisted of 277 patients who, despite extensive baseline cognitive assessment, MRI, and CSF analyses, had an uncertain diagnosis of mild cognitive impairment (MCI) (n = 177) or dementia (n = 100). After baseline diagnosis, each patient underwent an FDG-PET, followed by a post-FDG-PET diagnosis formulation. We evaluated (i) the change in diagnosis (baseline vs. post-FDG-PET), (ii) the change in diagnostic accuracy when comparing each baseline and post-FDG-PET diagnosis to a long-term follow-up (3.6 ± 1.8 years) diagnosis used as reference, and (iii) comparative FDG-PET performance testing in MCI and dementia conditions. RESULTS: FDG-PET led to a change in diagnosis in 86 of 277 (31%) patients, in particular in 57 of 177 (32%) MCI and in 29 of 100 (29%) dementia patients. Diagnostic change was greater than two-fold in the sub-sample of cases with dementia "of unclear etiology" (change in diagnosis in 20 of 32 (63%) patients). In the dementia group, after results of FDG-PET, diagnostic accuracy improved from 77 to 90% in Alzheimer's disease (AD) and from 85 to 94% in frontotemporal lobar degeneration (FTLD) patients (p < 0.01). FDG-PET performed better in dementia than in MCI (positive likelihood ratios >5 and < 5, respectively). CONCLUSION: Within a selected clinical population, FDG-PET has a significant clinical impact, both in early and differential diagnosis of uncertain dementia. FDG-PET provides significant incremental value to detect AD and FTLD over a clinical diagnosis of uncertain dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Diagnóstico Diferencial , Fluorodesoxiglucosa F18 , Humanos , Memoria , Tomografía de Emisión de Positrones
17.
Eur J Nucl Med Mol Imaging ; 48(7): 2086-2096, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33723628

RESUMEN

PURPOSE: The research community has focused on defining reliable biomarkers for the early detection of the pathological hallmarks of Alzheimer's disease (AD). In 2017, the Geneva AD Biomarker Roadmap initiative adapted the framework for the systematic validation of oncological biomarkers to AD, with the aim to accelerate their development and implementation in clinical practice. The aim of this work was to assess the validation status of tau PET ligands of the THK family and PBB3 as imaging biomarkers for AD, based on the Biomarker Roadmap methodology. METHODS: A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of clinical validity of tau PET ligands of the THK family and PBB3 was assessed based on the 5-phase development framework before the meeting and discussed during the workshop. RESULTS: PET radioligands of the THK family discriminate well between healthy controls and patients with AD dementia (phase 2; partly achieved) and recent evidence suggests an accurate diagnostic accuracy at the mild cognitive impairment (MCI) stage of the disease (phase 3; partly achieved). The phases 2 and 3 were considered not achieved for PBB3 since no evidence exists about the ligand's diagnostic accuracy. Preliminary evidence exists about the secondary aims of each phase for all ligands. CONCLUSION: Much work remains for completing the aims of phases 2 and 3 and replicating the available evidence. However, it is unlikely that the validation process for these tracers will be completed, given the presence of off-target binding and the development of second-generation tracers with improved binding and pharmacokinetic properties.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Encéfalo/metabolismo , Humanos , Ligandos , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 48(7): 2110-2120, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33590274

RESUMEN

PURPOSE: In 2017, the Geneva Alzheimer's disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. METHODS: All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1-2), clinical validity (phase 3-4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. RESULTS: The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. CONCLUSION: The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Estudios de Cohortes , Humanos , Tomografía de Emisión de Positrones , Proteínas tau
19.
Eur J Nucl Med Mol Imaging ; 48(7): 2183-2199, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844055

RESUMEN

BACKGROUND: [18F]flutemetamol PET scanning provides information on brain amyloid load and has been approved for routine clinical use based upon visual interpretation as either negative (equating to none or sparse amyloid plaques) or amyloid positive (equating to moderate or frequent plaques). Quantitation is however fundamental to the practice of nuclear medicine and hence can be used to supplement amyloid reading methodology especially in unclear cases. METHODS: A total of 2770 [18F]flutemetamol images were collected from 3 clinical studies and 6 research cohorts with available visual reading of [18F]flutemetamol and quantitative analysis of images. These were assessed further to examine both the discordance and concordance between visual and quantitative imaging primarily using thresholds robustly established using pathology as the standard of truth. Scans covered a wide range of cases (i.e. from cognitively unimpaired subjects to patients attending the memory clinics). Methods of quantifying amyloid ranged from using CE/510K cleared marked software (e.g. CortexID, Brass), to other research-based methods (e.g. PMOD, CapAIBL). Additionally, the clinical follow-up of two types of discordance between visual and quantitation (V+Q- and V-Q+) was examined with competing risk regression analysis to assess possible differences in prediction for progression to Alzheimer's disease (AD) and other diagnoses (OD). RESULTS: Weighted mean concordance between visual and quantitation using the autopsy-derived threshold was 94% using pons as the reference region. Concordance from a sensitivity analysis which assessed the maximum agreement for each cohort using a range of cut-off values was also estimated at approximately 96% (weighted mean). Agreement was generally higher in clinical cases compared to research cases. V-Q+ discordant cases were 11% more likely to progress to AD than V+Q- for the SUVr with pons as reference region. CONCLUSIONS: Quantitation of amyloid PET shows a high agreement vs binary visual reading and also allows for a continuous measure that, in conjunction with possible discordant analysis, could be used in the future to identify possible earlier pathological deposition as well as monitor disease progression and treatment effectiveness.


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina , Benzotiazoles , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos
20.
Eur J Nucl Med Mol Imaging ; 48(7): 2070-2085, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33688996

RESUMEN

BACKGROUND: The 2017 Alzheimer's disease (AD) Strategic Biomarker Roadmap (SBR) structured the validation of AD diagnostic biomarkers into 5 phases, systematically assessing analytical validity (Phases 1-2), clinical validity (Phases 3-4), and clinical utility (Phase 5) through primary and secondary Aims. This framework allows to map knowledge gaps and research priorities, accelerating the route towards clinical implementation. Within an initiative aimed to assess the development of biomarkers of tau pathology, we revised this methodology consistently with progress in AD research. METHODS: We critically appraised the adequacy of the 2017 Biomarker Roadmap within current diagnostic frameworks, discussed updates at a workshop convening the Alzheimer's Association and 8 leading AD biomarker research groups, and detailed the methods to allow consistent assessment of aims achievement for tau and other AD diagnostic biomarkers. RESULTS: The 2020 update applies to all AD diagnostic biomarkers. In Phases 2-3, we admitted a greater variety of study designs (e.g., cross-sectional in addition to longitudinal) and reference standards (e.g., biomarker confirmation in addition to clinical progression) based on construct (in addition to criterion) validity. We structured a systematic data extraction to enable transparent and formal evidence assessment procedures. Finally, we have clarified issues that need to be addressed to generate data eligible to evidence-to-decision procedures. DISCUSSION: This revision allows for more versatile and precise assessment of existing evidence, keeps up with theoretical developments, and helps clinical researchers in producing evidence suitable for evidence-to-decision procedures. Compliance with this methodology is essential to implement AD biomarkers efficiently in clinical research and diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides , Biomarcadores , Estudios Transversales , Progresión de la Enfermedad , Humanos , Estándares de Referencia , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA