Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Altern Med ; 17(1): 461, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28903731

RESUMEN

BACKGROUND: Plants produce secondary metabolites that often possess widespread bioactivity, and are then known as phytochemicals. We previously determined that several phytochemical-rich food-derived preparations were active against pathogenic foodborne bacteria. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomonads are increasingly becoming resistant to conventional modes of treatment. It is of interest to test bioactive, natural compounds for efficacy against these pathogens. METHODS: Using a cell assay, black tea, green tea, grape, pomegranate, and jujube extracts, as well as whole dried jujube were tested against three trichomonads: Trichomonas vaginalis strain G3 (found in humans), Tritrichomonas foetus strain D1 (found in cattle), and Tritrichomonas foetus-like organism strain C1 (found in cats). The most effective of the test substances was subsequently tested against two metronidazole-resistant Trichomonas vaginalis strains, and on normal mucosal flora. RESULTS: Black tea extract inhibited all the tested trichomonads, but was most effective against the T. vaginalis organisms. Inhibition by black tea was correlated with the total and individual theaflavin content of the two tea extracts determined by HPLC. Metronidazole-resistant Trichomonas vaginalis strains were also inhibited by the black tea extract. The response of the organisms to the remaining preparations was variable and unique. We observed no effect of the black tea extract on common normal flora bacteria. CONCLUSIONS: The results suggest that the black tea, and to a lesser degree green tea, grape seed, and pomegranate extracts might present possible natural alternative therapeutic agents to treat Trichomonas vaginalis infections in humans and the related trichomonad infections in animals, without negatively affecting the normal flora.


Asunto(s)
Enfermedades de los Gatos/microbiología , Enfermedades de los Bovinos/microbiología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tricomoniasis/microbiología , Tricomoniasis/veterinaria , Trichomonas vaginalis/efectos de los fármacos , Tritrichomonas foetus/efectos de los fármacos , Animales , Camellia sinensis/química , Gatos , Bovinos , Humanos , Lythraceae/química , Viabilidad Microbiana/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/aislamiento & purificación , Tritrichomonas foetus/genética , Tritrichomonas foetus/crecimiento & desarrollo , Tritrichomonas foetus/aislamiento & purificación , Vitis/química , Ziziphus/química
2.
Sci Rep ; 13(1): 18439, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891179

RESUMEN

Mucopolysaccharidosis III (MPSIII, Sanfilippo syndrome) is a devastating lysosomal storage disease that primarily affects the central nervous system. MPSIIIA is caused by loss-of-function mutations in the gene coding for sulfamidase (N-sulfoglucosamine sulfohydrolase/SGSH) resulting in SGSH enzyme deficiency, a buildup of heparin sulfate and subsequent neurodegeneration. There is currently no cure or disease modifying treatment for MPSIIIA. A mouse model for MPSIIIA was characterized in 1999 and later backcrossed onto the C57BL/6 background. In the present study, a novel immune deficient MPSIIIA mouse model (MPSIIIA-TKO) was created by backcrossing the immune competent, C57BL/6 MPSIIIA mouse to an immune deficient mouse model lacking Rag2, CD47 and Il2rg genes. The resulting mouse model has undetectable SGSH activity, exhibits histological changes consistent with MPSIIIA and lacks T cells, B cells and NK cells. This new mouse model has the potential to be extremely useful in testing human cellular therapies in an animal model as it retains the MPSIIIA disease phenotype while tolerating xenotransplantation.


Asunto(s)
Mucopolisacaridosis III , Animales , Humanos , Ratones , Mucopolisacaridosis III/genética , Mucopolisacaridosis III/patología , Ratones Endogámicos C57BL , Hidrolasas/genética , Fenotipo , Modelos Animales de Enfermedad
3.
J Agric Food Chem ; 66(30): 7942-7947, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30039703

RESUMEN

Potato peel, a waste product of the potato processing industry, is high in bioactive compounds. We investigated the in vitro antitrichomonad activity of potato peel powders prepared from commercial Russet, red, purple, and fingerling varieties as well as several known potato components, alkaloids and phenolic compounds, against three pathogenic strains of trichomonads. Trichomonas vaginalis is a sexually transmitted protozoan parasite that causes the human disease trichomoniasis. Two distinct strains of the related Tritrichomonas fetus infect cattle and cats. The glycoalkaloids α-chaconine and α-solanine were highly active against all parasite lines, while their common aglycone solanidine was only mildly inhibitory. α-Solanine was several times more active than α-chaconine. The phenolic compounds caffeic and chlorogenic acids and quercetin were mildly active against the parasites. Most of the potato peel samples were at least somewhat active against all three trichomonad species, but their activities were wide-ranging and did not correspond to their glycoalkaloid and phenolic content determined by HPLC. The two Russet samples were the most active against all three parasites. The purple potato peel sample was highly active against bovine and mostly inactive against feline trichomonads. None of the test substances were inhibitory toward several normal microflora species, suggesting the potential use of the peels for targeted therapeutic treatments against trichomonads.


Asunto(s)
Alcaloides/farmacología , Antiprotozoarios/farmacología , Fenoles/farmacología , Extractos Vegetales/farmacología , Solanum tuberosum/química , Tricomoniasis/microbiología , Trichomonas/efectos de los fármacos , Animales , Enfermedades de los Gatos/tratamiento farmacológico , Enfermedades de los Gatos/parasitología , Gatos , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/parasitología , Cromatografía Líquida de Alta Presión , Tubérculos de la Planta/química , Trichomonas/crecimiento & desarrollo , Tricomoniasis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA