Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Anim Ecol ; 91(7): 1416-1430, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35385132

RESUMEN

Changes in phenology and distribution are being widely reported for many migratory species in response to shifting environmental conditions. Understanding these changes and the situations in which they occur can be aided by understanding consistent individual differences in phenology and distribution and the situations in which consistency varies in strength or detectability. Studies tracking the same individuals over consecutive years are increasingly reporting migratory timings to be a repeatable trait, suggesting that flexible individual responses to environmental conditions may contribute little to population-level changes in phenology and distribution. However, how this varies across species and sexes, across the annual cycle and in relation to study (tracking method, study design) and/or ecosystem characteristics is not yet clear. Here, we take advantage of the growing number of publications in movement ecology to perform a phylogenetic multilevel meta-analysis of repeatability estimates for avian migratory timings to investigate these questions. Of 2,433 reviewed studies, 54 contained suitable information for meta-analysis, resulting in 177 effect sizes from 47 species. Individual repeatability of avian migratory timings averaged 0.414 (95% confidence interval: 0.3-0.5) across landbirds, waterbirds and seabirds, suggesting consistent individual differences in migratory timings is a common feature of migratory systems. Timing of departure from the non-breeding grounds was more repeatable than timings of arrival at or departure from breeding grounds, suggesting that conditions encountered on migratory journeys and outcome of breeding attempts can influence individual variation. Population-level shifts in phenology could arise through individual timings changing with environmental conditions and/or through shifts in the numbers of individuals with different timings. Our findings suggest that, in addition to identifying the conditions associated with individual variation in phenology, exploring the causes of between-individual variation will be key in predicting future rates and directions of changes in migratory timings. We therefore encourage researchers to report the within- and between- individual variance components underpinning the reported repeatability estimates to aid interpretation of migration behaviour. In addition, the lack of studies in the tropics means that levels of repeatability in less strongly seasonal environments are not yet clear.


Asunto(s)
Migración Animal , Ecosistema , Animales , Aves , Filogenia , Estaciones del Año
2.
Glob Chang Biol ; 25(8): 2661-2677, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31006150

RESUMEN

Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human-modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human-appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land-use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha-1  year-1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha-1  year-1 , which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha-1  year-1 ; however, depending on the density of shade trees, it ranged from -4.6 to 5.2 Mg C ha-1  year-1 . Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.


Asunto(s)
Cacao , Ecosistema , África Occidental , Carbono , Granjas , Bosques , Humanos , Árboles
3.
Mol Ecol ; 26(20): 5716-5728, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833786

RESUMEN

Global-scale gene flow is an important concern in conservation biology as it has the potential to either increase or decrease genetic diversity in species and populations. Although many studies focus on the gene flow between different populations of a single species, the potential for gene flow and introgression between species is understudied, particularly in seabirds. The only well-studied example of a mixed-species, hybridizing population of petrels exists on Round Island, in the Indian Ocean. Previous research assumed that Round Island represents a point of secondary contact between Atlantic (Pterodroma arminjoniana) and Pacific species (Pterodroma neglecta and Pterodroma heraldica). This study uses microsatellite genotyping and tracking data to address the possibility of between-species hybridization occurring outside the Indian Ocean. Dispersal and gene flow spanning three oceans were demonstrated between the species in this complex. Analysis of migration rates estimated using bayesass revealed unidirectional movement of petrels from the Atlantic and Pacific into the Indian Ocean. Conversely, structure analysis revealed gene flow between species of the Atlantic and Pacific oceans, with potential three-way hybrids occurring outside the Indian Ocean. Additionally, geolocation tracking of Round Island petrels revealed two individuals travelling to the Atlantic and Pacific. These results suggest that interspecific hybrids in Pterodroma petrels are more common than was previously assumed. This study is the first of its kind to investigate gene flow between populations of closely related Procellariiform species on a global scale, demonstrating the need for consideration of widespread migration and hybridization in the conservation of threatened seabirds.


Asunto(s)
Aves/clasificación , Flujo Génico , Variación Genética , Genética de Población , Hibridación Genética , Migración Animal , Animales , Océano Atlántico , Genotipo , Océano Índico , Repeticiones de Microsatélite , Modelos Genéticos , Océano Pacífico
4.
Glob Chang Biol ; 23(2): 550-565, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27178393

RESUMEN

Tropical cyclones are renowned for their destructive nature and are an important feature of marine and coastal tropical ecosystems. Over the last 40 years, their intensity, frequency and tracks have changed, partly in response to ocean warming, and future predictions indicate that these trends are likely to continue with potential consequences for human populations and coastal ecosystems. However, our understanding of how tropical cyclones currently affect marine biodiversity, and pelagic species in particular, is limited. For seabirds, the impacts of cyclones are known to be detrimental at breeding colonies, but impacts on the annual survival of pelagic adults and juveniles remain largely unexplored and no study has simultaneously explored the direct impacts of cyclones on different life-history stages across the annual life cycle. We used a 20-year data set on tropical cyclones in the Indian Ocean, tracking data from 122 Round Island petrels and long-term capture-mark-recapture data to explore the impacts of tropical cyclones on the survival of adult and juvenile (first year) petrels during both the breeding and migration periods. The tracking data showed that juvenile and adult Round Island petrels utilize the three cyclone regions of the Indian Ocean and were potentially exposed to cyclones for a substantial part of their annual cycle. However, only juvenile petrel survival was affected by cyclone activity; negatively by a strong cyclone in the vicinity of the breeding colony and positively by increasing cyclone activity in the Northern Indian Ocean where they spend the majority of their first year at sea. These contrasting effects raise the intriguing prospect that the projected changes in cyclones under current climate change scenarios may have positive as well as the more commonly perceived negative impacts on marine biodiversity.


Asunto(s)
Aves , Cambio Climático , Tormentas Ciclónicas , Animales , Biodiversidad , Ecosistema , Humanos , Océano Índico
5.
Curr Biol ; 34(8): 1786-1793.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38614083

RESUMEN

Soda lakes are some of the most productive aquatic ecosystems.1 Their alkaline-saline waters sustain unique phytoplankton communities2,3 and provide vital habitats for highly specialized biodiversity including invertebrates, endemic fish species, and Lesser Flamingos (Phoeniconaias minor).1,4 More than three-quarters of Lesser Flamingos inhabit the soda lakes of East Africa5; however, populations are in decline.6 Declines could be attributed to their highly specialized diet of cyanobacteria7 and dependence on a network of soda lake feeding habitats that are highly sensitive to climate fluctuations and catchment degradation.8,9,10,11,12 However, changing habitat availability has not been assessed due to a lack of in situ water quality and hydrology data and the irregular monitoring of these waterbodies.13 Here, we combine satellite Earth observations and Lesser Flamingo abundance observations to quantify spatial and temporal trends in productivity and ecosystem health over multiple decades at 22 soda lakes across East Africa. We found that Lesser Flamingo distributions are best explained by phytoplankton biomass, an indicator of food availability. However, timeseries analyses revealed significant declines in phytoplankton biomass from 1999 to 2022, most likely driven by substantial rises in lake water levels. Declining productivity has reduced the availability of healthy soda lake ecosystems, most notably in equatorial Kenya and northern Tanzania. Our results highlight the increasing vulnerability of Lesser Flamingos and other soda lake biodiversity in East Africa, particularly with increased rainfall predicted under climate change.14,15,16 Without improved lake monitoring and catchment management practices, soda lake ecosystems could be pushed beyond their environmental tolerances. VIDEO ABSTRACT.


Asunto(s)
Lagos , Fitoplancton , Animales , África Oriental , Biodiversidad , Biomasa , Cambio Climático , Ecosistema , Fitoplancton/fisiología
6.
Sci Rep ; 14(1): 6201, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485959

RESUMEN

Globally, pesticides improve crop yields but at great environmental cost, and their overuse has caused resistance. This incurs large financial and production losses but, despite this, very diversified farm management that might delay or prevent resistance is uncommon in intensive farming. We asked farmers to design more diversified cropping strategies aimed at controlling herbicide resistance, and estimated resulting weed densities, profits, and yields compared to prevailing practice. Where resistance is low, it is financially viable to diversify pre-emptively; however, once resistance is high, there are financial and production disincentives to adopting diverse rotations. It is therefore as important to manage resistance before it becomes widespread as it is to control it once present. The diverse rotations targeting high resistance used increased herbicide application frequency and volume, contributing to these rotations' lack of financial viability, and raising concerns about glyphosate resistance. Governments should encourage adoption of diverse rotations in areas without resistance. Where resistance is present, governments may wish to incentivise crop diversification despite the drop in wheat production as it is likely to bring environmental co-benefits. Our research suggests we need long-term, proactive, food security planning and more integrated policy-making across farming, environment, and health arenas.


Asunto(s)
Herbicidas , Control de Malezas , Control de Malezas/métodos , Resistencia a los Herbicidas , Productos Agrícolas , Herbicidas/farmacología , Glifosato , Agricultura/métodos , Malezas
7.
Ecol Lett ; 16(4): 438-45, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23360587

RESUMEN

Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long-term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short- and long-term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.


Asunto(s)
Falconiformes/fisiología , Fertilidad/genética , Dinámica Poblacional , Animales , Falconiformes/genética , Femenino , Masculino , Mauricio , Densidad de Población
8.
Am Nat ; 182(6): 743-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24231536

RESUMEN

A major question in ecology is how age-specific variation in demographic parameters influences population dynamics. Based on long-term studies of growing populations of birds and mammals, we analyze population dynamics by using fluctuations in the total reproductive value of the population. This enables us to account for random fluctuations in age distribution. The influence of demographic and environmental stochasticity on the population dynamics of a species decreased with generation time. Variation in age-specific contributions to total reproductive value and to stochastic components of population dynamics was correlated with the position of the species along the slow-fast continuum of life-history variation. Younger age classes relative to the generation time accounted for larger contributions to the total reproductive value and to demographic stochasticity in "slow" than in "fast" species, in which many age classes contributed more equally. In contrast, fluctuations in population growth rate attributable to stochastic environmental variation involved a larger proportion of all age classes independent of life history. Thus, changes in population growth rates can be surprisingly well explained by basic species-specific life-history characteristics.


Asunto(s)
Aves/fisiología , Ambiente , Mamíferos/fisiología , Modelos Biológicos , Factores de Edad , Animales , Dinámica Poblacional , Reproducción , Especificidad de la Especie , Procesos Estocásticos , Factores de Tiempo
9.
Curr Biol ; 33(2): R80-R82, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693316

RESUMEN

Tropical deforestation is a significant cause of global biodiversity loss. A new study shows that habitat loss may result in abrupt changes in networks of interacting species. This has major implications for the conservation and restoration of tropical forest ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Ecología , Biodiversidad , Clima Tropical
10.
Ecol Evol ; 13(5): e10063, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37168983

RESUMEN

How to best track species as they rapidly alter their distributions in response to climate change has become a key scientific priority. Information on species distributions is derived from biological records, which tend to be primarily sourced from traditional recording schemes, but increasingly also by citizen science initiatives and social media platforms, with biological recording having become more accessible to the general public. To date, however, our understanding of the respective potential of social media and citizen science to complement the information gathered by traditional recording schemes remains limited, particularly when it comes to tracking species on the move with climate change. To address this gap, we investigated how species occurrence observations vary between different sources and to what extent traditional, citizen science, and social media records are complementary, using the Banded Demoiselle (Calopteryx splendens) in Britain as a case study. Banded Demoiselle occurrences were extracted from citizen science initiatives (iRecord and iNaturalist) and social media platforms (Facebook, Flickr, and Twitter), and compared with traditional records primarily sourced from the British Dragonfly Society. Our results showed that species presence maps differ between record types, with 61% of the citizen science, 58% of the traditional, and 49% of the social media observations being unique to that data type. Banded Demoiselle habitat suitability maps differed most according to traditional and social media projections, with traditional and citizen science being the most consistent. We conclude that (i) social media records provide insights into the Banded Demoiselle distribution and habitat preference that are different from, and complementary to, the insights gathered from traditional recording schemes and citizen science initiatives; (ii) predicted habitat suitability maps that ignore information from social media records can substantially underestimate (by over 3500 km2 in the case of the Banded Demoiselle) potential suitable habitat availability.

11.
Curr Biol ; 33(23): 5247-5256.e4, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37972589

RESUMEN

Understanding marine predator distributions is an essential component of arresting their catastrophic declines.1,2,3,4 In temperate, polar, and upwelling seas, predictable oceanographic features can aggregate migratory predators, which benefit from site-based protection.5,6,7,8 In more oligotrophic tropical waters, however, it is unclear whether environmental conditions create similar multi-species hotspots. We track the non-breeding movements and habitat preferences of a tropical seabird assemblage (n = 348 individuals, 9 species, and 10 colonies in the western Indian Ocean), which supports globally important biodiversity.9,10,11,12 We mapped species richness from tracked populations and then predicted the same diversity measure for all known Indian Ocean colonies. Most species had large non-breeding ranges, low or variable residency patterns, and specific habitat preferences. This in turn revealed that maximum species richness covered >3.9 million km2, with no focused aggregations, in stark contrast to large-scale tracking studies in all other ocean basins.5,6,7,13,14 High species richness was captured by existing marine protected areas (MPAs) in the region; however, most occurred in the unprotected high seas beyond national jurisdictions. Seabirds experience cumulative anthropogenic impacts13 and high mortality15,16 during non-breeding. Therefore, our results suggest that seabird conservation in the tropical Indian Ocean requires an ocean-wide perspective, including high seas legislation.17 As restoration actions improve the outlook for tropical seabirds on land18,19,20,21,22 and environmental change reshapes the habitats that support them at sea,15,16 appropriate marine conservation will be crucial for their long-term recovery and whole ecosystem restoration.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Aves , Conservación de los Recursos Naturales , Océano Índico
12.
Sci Rep ; 12(1): 19653, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385148

RESUMEN

Anthropogenic climate change causes more frequent and intense fluctuations in the El Niño Southern Oscillation (ENSO). Understanding the effects of ENSO on agricultural systems is crucial for predicting and ameliorating impacts on lives and livelihoods, particularly in perennial tree crops, which may show both instantaneous and delayed responses. Using cocoa production in Ghana as a model system, we analyse the impact of ENSO on annual production and climate over the last 70 years. We report that in recent decades, El Niño years experience reductions in cocoa production followed by several years of increased production, and that this pattern has significantly shifted compared with prior to the 1980s. ENSO phase appears to affect the climate in Ghana, and over the same time period, we see corresponding significant shifts in the climatic conditions resulting from ENSO extremes, with increasing temperature and water stress. We attribute these changes to anthropogenic climate change, and our results illustrate the big data analyses necessary to improve understanding of perennial crop responses to climate change in general, and climate extremes in particular.


Asunto(s)
Cambio Climático , Árboles , El Niño Oscilación del Sur , Productos Agrícolas , Temperatura
13.
Mov Ecol ; 10(1): 13, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287747

RESUMEN

BACKGROUND: In migratory species, the extent of within- and between-individual variation in migratory strategies can influence potential rates and directions of responses to environmental changes. Quantifying this variation requires tracking of many individuals on repeated migratory journeys. At temperate and higher latitudes, low levels of within-individual variation in migratory behaviours are common and may reflect repeated use of predictable resources in these seasonally-structured environments. However, variation in migratory behaviours in the tropics, where seasonal predictability of food resources can be weaker, remains largely unknown. METHODS: Round Island petrels (Pterodroma sp.) are tropical, pelagic seabirds that breed all year round and perform long-distance migrations. Using multi-year geolocator tracking data from 62 individuals between 2009 and 2018, we quantify levels of within- and between-individual variation in non-breeding distributions and timings. RESULTS: We found striking levels of between-individual variation in at-sea movements and timings, with non-breeding migrations to different areas occurring across much of the Indian Ocean and throughout the whole year. Despite this, repeat-tracking of individual petrels revealed remarkably high levels of spatial and temporal consistency in within-individual migratory behaviour, particularly for petrels that departed at similar times in different years and for those departing in the austral summer. However, while the same areas were used by individuals in different years, they were not necessarily used at the same times during the non-breeding period. CONCLUSIONS: Even in tropical systems with huge ranges of migratory routes and timings, our results suggest benefits of consistency in individual migratory behaviours. Identifying the factors that drive and maintain between-individual variation in migratory behaviour, and the consequences for breeding success and survival, will be key to understanding the consequences of environmental change across migratory ranges.

14.
Proc Biol Sci ; 278(1715): 2173-81, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21159674

RESUMEN

Spatial patterns of site occupancy are commonly driven by habitat heterogeneity and are thought to shape population dynamics through a site-dependent regulatory mechanism. When examining this, however, most studies have only focused on a single vital rate (reproduction), and little is known about how space effectively contributes to the regulation of population dynamics. We investigated the underlying mechanisms driving density-dependent processes in vital rates in a Mauritius kestrel population where almost every individual was monitored. Different mechanisms acted on different vital rates, with breeding success regulated by site dependence (differential use of space) and juvenile survival by interference (density-dependent competition for resources). Although territorial species are frequently assumed to be regulated through site dependence, we show that interference was the key regulatory mechanism in this population. Our integrated approach demonstrates that the presence of spatial processes regarding one trait does not mean that they necessarily play an important role in regulating population growth, and demonstrates the complexity of the regulatory process.


Asunto(s)
Falconiformes/fisiología , Conducta Sexual Animal , Territorialidad , Animales , Cruzamiento , Femenino , Masculino , Modelos Biológicos , Densidad de Población , Dinámica Poblacional
15.
Proc Biol Sci ; 278(1722): 3184-90, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21429927

RESUMEN

There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.


Asunto(s)
Cambio Climático , Falconiformes/fisiología , Reproducción/fisiología , Estaciones del Año , Animales , Fertilidad/fisiología , Mauricio , Modelos Biológicos , Observación , Lluvia , Procesos Estocásticos , Factores de Tiempo
16.
J Anim Ecol ; 80(3): 688-95, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21463301

RESUMEN

1. Spatial variation in habitat quality and its demographic consequences have important implications for the regulation of animal populations. Theoretically, habitat quality is typically viewed as a single gradient from 'poor' to 'good', but in wild populations it is possible that there are multiple environmental gradients that determine spatial variation in demography. 2. Understanding environmental gradients is important to gain mechanistic insights into important population processes, but also to understand how populations might respond to environmental change. Here, we explore habitat and elevation gradients and their implications for population persistence using detailed long-term data on 600 individuals of the Mauritius kestrel. These data allow us to statistically separate spatial variation in demography from variation arising out of individual or environmental quality and explore its relationships with habitat and topography. 3. Birds that breed earlier in the season have higher reproductive success, and we found that the timing of breeding varies significantly between territories. This variation is primarily driven by elevation, with birds breeding progressively later as elevation increases. 4. Pre-fledging survival from the egg to fledgling stage (independently of timing), and recruitment, also varied significantly between territories. This variation is driven by the habitat surrounding breeding sites with increasing agricultural encroachment causing survival and recruitment to decline. 5. Taken together, our results suggest that there are likely to be multiple environmental gradients affecting spatial variation in productivity in wild populations, and hence multiple and different routes through which environmental change might have consequences for population dynamics by modifying spatial processes.


Asunto(s)
Ambiente , Falconiformes/fisiología , Reproducción , Altitud , Animales , Tamaño de la Nidada , Ecosistema , Aptitud Genética , Geografía , Modelos Lineales , Mauricio , Modelos Biológicos , Comportamiento de Nidificación , Estaciones del Año
17.
Proc Biol Sci ; 277(1699): 3477-82, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534612

RESUMEN

Individual preferences for good habitat are often thought to have a beneficial stabilizing effect for populations. However, if individuals preferentially compete for better-quality territories, these may become hotspots of conflict. We show that, in an endangered species, this process decreases the productivity of favoured territories to the extent that differences in productivity between territories disappear. Unlike predictions from current demographic theory on site-dependent population regulation (ideal despotic distribution), we show that population productivity is reduced if resources are distributed unevenly in space. Competition for high-quality habitat can thus have detrimental consequences for populations even though it benefits individuals. Manipulating conflict (e.g. by reducing variation in habitat quality) can therefore prove an effective conservation measure in species with strong social or territorial conflict.


Asunto(s)
Conducta Animal/fisiología , Evolución Biológica , Conservación de los Recursos Naturales , Ecosistema , Passeriformes/fisiología , Animales , Femenino , Masculino , Reproducción , Seychelles , Predominio Social , Territorialidad
18.
Trends Ecol Evol ; 35(10): 919-926, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32650985

RESUMEN

One of the most striking human impacts on global biodiversity is the ongoing depletion of large vertebrates from terrestrial and aquatic ecosystems. Recent work suggests this loss of megafauna can affect processes at biome or Earth system scales with potentially serious impacts on ecosystem structure and function, ecosystem services, and biogeochemical cycles. We argue that our contemporary approach to biodiversity conservation focuses on spatial scales that are too small to adequately address these impacts. We advocate a new global approach to address this conservation gap, which must enable megafaunal populations to recover to functionally relevant densities. We conclude that re-establishing biome and Earth system functions needs to become an urgent global priority for conservation science and policy.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Conservación de los Recursos Naturales , Planeta Tierra
19.
Nat Sustain ; 3(1): 63-71, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31942455

RESUMEN

Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs. Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Yet despite this threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and a new economic model to estimate that the annual cost of resistance in England is £0.4bn in lost gross profit (2014 prices), and annual wheat yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1bn and 3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of resistance could be enormous. Our research provides an urgent case for national-scale planning to combat further evolution of resistance, and an incentive for policies focused on increasing yields through more sustainable food-production systems rather than relying so heavily on herbicides.

20.
J Anim Ecol ; 78(1): 219-25, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18811660

RESUMEN

1. Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. 2. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. 3. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. 4. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. 5. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.


Asunto(s)
Reproducción/fisiología , Conducta Sexual Animal/fisiología , Predominio Social , Pájaros Cantores/fisiología , Animales , Conservación de los Recursos Naturales , Extinción Biológica , Femenino , Masculino , Crecimiento Demográfico , Seychelles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA