Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 13016, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155279

RESUMEN

Lake Malawi cichlid fishes exhibit extensive divergence in form and function built from a relatively small number of genetic changes. We compared the genomes of rock- and sand-dwelling species and asked which genetic variants differed among the groups. We found that 96% of differentiated variants reside in non-coding sequence but these non-coding diverged variants are evolutionarily conserved. Genome regions near differentiated variants are enriched for craniofacial, neural and behavioral categories. Following leads from genome sequence, we used rock- vs. sand-species and their hybrids to (i) delineate the push-pull roles of BMP signaling and irx1b in the specification of forebrain territories during gastrulation and (ii) reveal striking context-dependent brain gene expression during adult social behavior. Our results demonstrate how divergent genome sequences can predict differences in key evolutionary traits. We highlight the promise of evolutionary reverse genetics-the inference of phenotypic divergence from unbiased genome sequencing and then empirical validation in natural populations.


Asunto(s)
Conducta Animal , Evolución Biológica , Encéfalo/fisiología , Genoma , Genómica , Animales , Cíclidos/clasificación , Cíclidos/fisiología , Genómica/métodos , Filogenia , Transcriptoma
2.
Neuron ; 94(6): 1112-1120.e4, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28641110

RESUMEN

At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa/genética , Proyección Neuronal/genética , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción SOXC/genética , Animales , Supervivencia Celular , Perfilación de la Expresión Génica , Ratones , Microscopía Fluorescente , Traumatismos del Nervio Óptico/patología , Fosfohidrolasa PTEN/genética , Regeneración/genética , Retina/metabolismo , Retina/patología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/patología , Factores de Transcripción SOXC/metabolismo
3.
Neuron ; 92(6): 1294-1307, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009275

RESUMEN

Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Axotomía , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Regeneración Nerviosa/genética , Traumatismos del Nervio Óptico/genética , Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/ultraestructura , Transporte Biológico , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Microscopía Confocal , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Nervio Óptico/ultraestructura , Regeneración , Retina , Células Ganglionares de la Retina/ultraestructura , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA