Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Neurosci ; 46(1): 55-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37231858

RESUMEN

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Asunto(s)
Imagen de Difusión Tensora , Hipoxia-Isquemia Encefálica , Recién Nacido , Humanos , Imagen de Difusión Tensora/métodos , Pronóstico , Hipoxia-Isquemia Encefálica/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Edema/complicaciones , Edema/patología
2.
Dev Neurosci ; 46(2): 136-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37467736

RESUMEN

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.


Asunto(s)
Electroencefalografía , Hipoxia-Isquemia Encefálica , Recién Nacido , Niño , Humanos , Proyectos Piloto , Electroencefalografía/métodos , Convulsiones , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/terapia , Biomarcadores
3.
J Pediatr ; 273: 114158, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889855

RESUMEN

OBJECTIVE: To determine whether an enteral, clonidine-based sedation strategy (CLON) during therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy would decrease opiate use while maintaining similar short-term safety and efficacy profiles to a morphine-based strategy (MOR). STUDY DESIGN: This was a single-center, observational study conducted at a level IV neonatal intensive care unit from January 1, 2017, to October 1, 2021. From April 13, 2020, to August 13, 2020, we transitioned from MOR to CLON. Thus, patients receiving TH for hypoxic-ischemic encephalopathy were grouped to MOR (before April 13, 2020) and CLON (after August 13, 2020). We calculated the total and rescue morphine milligram equivalent/kg (primary outcome) and frequency of hemodynamic changes (secondary outcome) for both groups. RESULTS: The MOR and CLON groups (74 and 25 neonates, respectively) had similar baseline characteristics and need for rescue sedative intravenous infusion (21.6% MOR and 20% CLON). Both morphine milligram equivalent/kg and need for rescue opiates (combined bolus and infusions) were greater in MOR than CLON (P < .001). As days in TH advanced, a lower percentage of patients receiving CLON needed rescue opiates (92% on day 1 to 68% on day 3). Patients receiving MOR received a greater cumulative dose of dopamine and more frequently required a second inotrope and hydrocortisone for hypotension. MOR had a lower respiratory rate during TH (P = .01 vs CLON). CONCLUSIONS: Our CLON protocol is noninferior to MOR, maintaining perceived effectiveness and hemodynamic safety, with an apparently reduced need for opiates and inotropes.

4.
Pediatr Res ; 94(6): 1958-1965, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37340101

RESUMEN

BACKGROUND: Extremely low birth weight (ELBW) infants comprise a fragile population at risk for neurodevelopmental disabilities (NDD). Systemic steroids were previously associated with NDD, but more recent studies suggest hydrocortisone (HCT) may improve survival without increasing NDD. However, the effects of HCT on head growth adjusted for illness severity during NICU hospitalization are unknown. Thus, we hypothesize that HCT will protect head growth, accounting for illness severity using a modified neonatal Sequential Organ Failure Assessment (M-nSOFA) score. METHODS: We conducted a retrospective study that included infants born at 23-29 weeks gestational age (GA) and < 1000 g. Our study included 73 infants, 41% of whom received HCT. RESULTS: We found negative correlations between growth parameters and age, similar between HCT and control patients. HCT-exposed infants had lower GA but similar normalized birth weights; HCT-exposed infants also had higher illness severity and longer lengths of hospital stay. We found an interaction between HCT exposure and illness severity on head growth, such that infants exposed to HCT had better head growth compared to those not exposed to HCT when adjusted for illness severity. CONCLUSION: These findings emphasize the importance of considering patient illness severity and suggest that HCT use may offer additional benefits not previously considered. IMPACT: This is the first study to assess the relationship between head growth and illness severity in extremely preterm infants with extremely low birth weights during their initial NICU hospitalization. Infants exposed to hydrocortisone (HCT) were overall more ill than those not exposed, yet HCT exposed infants had better preserved head growth relative to illness severity. Better understanding of the effects of HCT exposure on this vulnerable population will help guide more informed decisions on the relative risks and benefits for HCT use.


Asunto(s)
Hidrocortisona , Recien Nacido con Peso al Nacer Extremadamente Bajo , Humanos , Recién Nacido , Lactante , Hidrocortisona/uso terapéutico , Estudios Retrospectivos , Recien Nacido Prematuro , Gravedad del Paciente
5.
Dev Neurosci ; 44(4-5): 266-276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35358965

RESUMEN

Cerebral palsy (CP) is the most common cause of physical disability for children worldwide. Many infants and toddlers are not diagnosed with CP until they fail to achieve obvious motor milestones. Currently, there are no effective pharmacologic interventions available for infants and toddlers to substantially improve their trajectory of neurodevelopment. Because children with CP from preterm birth also exhibit a sustained immune system hyper-reactivity, we hypothesized that neuro-immunomodulation with a regimen of repurposed endogenous neurorestorative medications, erythropoietin (EPO) and melatonin (MLT), could improve this trajectory. Thus, we administered EPO + MLT to rats with CP during human infant-toddler equivalency to determine whether we could influence gait patterns in mature animals. After a prenatal injury on embryonic day 18 (E18) that mimics chorioamnionitis at ∼25 weeks human gestation, rat pups were born and raised with their dam. Beginning on postnatal day 15 (P15), equivalent to human infant ∼1 year, rats were randomized to receive either a regimen of EPO + MLT or vehicle (sterile saline) through P20. Gait was assessed in young adult rats at P30 using computerized digital gait analyses including videography on a treadmill. Results indicate that gait metrics of young adult rats treated with an infantile cocktail of EPO + MLT were restored compared to vehicle-treated rats (p < 0.05) and similar to sham controls. These results provide reassuring evidence that pharmacological interventions may be beneficial to infants and toddlers who are diagnosed with CP well after the traditional neonatal window of intervention.


Asunto(s)
Lesiones Encefálicas , Eritropoyetina , Melatonina , Nacimiento Prematuro , Animales , Lesiones Encefálicas/tratamiento farmacológico , Eritropoyetina/farmacología , Femenino , Marcha , Humanos , Lactante , Melatonina/farmacología , Embarazo , Ratas
6.
Dev Neurosci ; 44(4-5): 363-372, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100588

RESUMEN

Identifying the hemodynamic range that best supports cerebral perfusion using near infrared spectroscopy (NIRS) autoregulation monitoring is a potential physiologic marker for neonatal hypoxic-ischemic encephalopathy (HIE) during therapeutic hypothermia. However, an optimal autoregulation monitoring algorithm has not been identified for neonatal clinical medicine. We tested whether the hemoglobin volume phase (HVP), hemoglobin volume (HVx), and pressure passivity index (PPI) identify changes in autoregulation that are associated with brain injury on MRI or death. The HVP measures the phase difference between a NIRS metric of cerebral blood volume, the total hemoglobin (THb), and mean arterial blood pressure (MAP) at the frequency of maximum coherence. The HVx is the correlation coefficient between MAP and THb. The PPI is the percentage of coherent MAP-DHb (difference between oxygenated and deoxygenated hemoglobin, a marker of cerebral blood flow) epochs in a chosen time period. Neonates cooled for HIE were prospectively enrolled in an observational study in two neonatal intensive care units. In analyses adjusted for study site and encephalopathy level, all indices detected relationships between poor autoregulation in the first 6 h after rewarming with a higher injury score on MRI. Only HVx and PPI during hypothermia and the PPI during rewarming identified autoregulatory dysfunction associated with a poor outcome independent of study site and encephalopathy level. Our findings suggest that the accuracy of mathematical autoregulation algorithms in detecting the risk of brain injury or death may depend on temperature and postnatal age. Extending autoregulation monitoring beyond the standard 72 h of therapeutic hypothermia may serve as a method to provide personalized care by assessing the need for and efficacy of future therapies after the hypothermia treatment phase.


Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Lesiones Encefálicas/terapia , Circulación Cerebrovascular/fisiología , Hemoglobinas , Homeostasis/fisiología , Humanos , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/terapia , Recién Nacido
7.
J Pediatr ; 246: 34-39.e3, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460699

RESUMEN

OBJECTIVE: To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN: Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS: The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS: During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.


Asunto(s)
Displasia Broncopulmonar , Síndrome de Dificultad Respiratoria del Recién Nacido , Biomarcadores/sangre , Displasia Broncopulmonar/diagnóstico , Citocinas/sangre , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Interleucina-10 , Interleucina-6 , Interleucina-8 , Embarazo , Síndrome de Dificultad Respiratoria del Recién Nacido/diagnóstico , Factor A de Crecimiento Endotelial Vascular/sangre
8.
Neurobiol Dis ; 148: 105222, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309937

RESUMEN

Since neonatal hypoxia-ischemia (HI) disrupts the hippocampal (Hp) GABAergic network in the mouse and Hp injury in this model correlates with flurothyl seizure susceptibility only in male mice, we hypothesized that GABAergic disruption correlates with flurothyl seizure susceptibility in a sex-specific manner. C57BL6 mice were exposed to HI (Vannucci model) versus sham procedures at P10, randomized to normothermia (NT) or therapeutic hypothermia (TH), and subsequently underwent flurothyl seizure testing at P18. Only in male mice, Hp atrophy correlated with seizure susceptibility. The number of Hp parvalbumin positive interneurons (PV+INs) decreased after HI in both sexes, but TH attenuated this deficit only in females. In males only, seizure susceptibility directly correlated with the number of PV+INs, but not somatostatin or calretinin expressing INs. Hp GABAB receptor subunit levels were decreased after HI, but unrelated to later seizure susceptibility. In contrast, Hp GABAA receptor α1 subunit (GABAARα1) levels were increased after HI. Adjusting the number of PV+ INs for their GABAARα1 expression strengthened the correlation with seizure susceptibility in male mice. Thus, we identified a novel Hp sex-specific GABA-mediated mechanism of compensation after HI that correlates with flurothyl seizure susceptibility warranting further study to better understand potential clinical translation.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Interneuronas/metabolismo , Animales , Animales Recién Nacidos , Convulsivantes/toxicidad , Susceptibilidad a Enfermedades , Flurotilo/toxicidad , Neuronas GABAérgicas/fisiología , Hipocampo/fisiopatología , Hipoxia-Isquemia Encefálica/fisiopatología , Interneuronas/fisiología , Ratones , Parvalbúminas , Convulsiones/inducido químicamente , Factores Sexuales
9.
Pediatr Res ; 89(1): 223-230, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32268341

RESUMEN

BACKGROUND: Cooling delays, temperature outside 33-34 °C, and blood pressure below the mean arterial blood pressure with optimal cerebral autoregulation (MAPOPT) might diminish neuroprotection from therapeutic hypothermia in neonates with hypoxic-ischemic encephalopathy (HIE). We hypothesized that longer time to reach temperature <34 °C and having temperature outside 33-34 °C would be associated with worse autoregulation and greater brain injury. METHODS: Neonates with HIE had rectal temperature and near-infrared spectroscopy autoregulation monitoring during hypothermia (n = 63) and rewarming (n = 58). All underwent brain MRI, and a subset received diffusion tensor imaging MRI before day 10 (n = 41). RESULTS: Most neonates reached <34 °C at 3-6 h of life. MAPOPT was identified in 54/63 (86%) during hypothermia and in 53/58 (91%) during rewarming. Cooling time was not related to blood pressure deviation from MAPOPT. Later cooling was associated with lower ADC scalar in unilateral posterior centrum semiovale but not in other regions. Temperatures >34 °C were associated with blood pressure above MAPOPT but not with brain injury. CONCLUSIONS: In neonates who were predominantly cooled after 3 h, cooling time was not associated with autoregulation or overall brain injury. Blood pressure deviation above MAPOPT was associated with temperature >34 °C. Additional studies are needed in a more heterogeneous population. IMPACT: Cooling time to reach target hypothermia temperature within 6 h of birth did not affect cerebral autoregulation measured by NIRS in neonates with hypoxic-ischemic encephalopathy (HIE). Temperature fluctuations >33-34 °C were associated with blood pressures that exceeded the range of optimal autoregulatory vasoreactivity. Cooling time within 6 h of birth and temperatures >33-34 °C were not associated with qualitative brain injury on MRI. Regional apparent diffusion coefficient scalars on diffusion tensor imaging MRI were not appreciably affected by cooling time or temperature >33-34 °C. Additional research in a larger and more heterogeneous population is needed to determine how delayed cooling and temperatures beyond the target hypothermia range affect autoregulation and brain injury.


Asunto(s)
Hipotermia Inducida , Hipoxia-Isquemia Encefálica/terapia , Enfermedades del Recién Nacido/terapia , Presión Arterial , Circulación Cerebrovascular , Imagen de Difusión por Resonancia Magnética , Femenino , Homeostasis , Humanos , Hipotermia Inducida/efectos adversos , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/fisiopatología , Recién Nacido , Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/fisiopatología , Unidades de Cuidado Intensivo Neonatal , Masculino , Proyectos Piloto , Estudios Prospectivos , Espectroscopía Infrarroja Corta , Factores de Tiempo , Resultado del Tratamiento
10.
Brain Behav Immun ; 84: 45-58, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31765790

RESUMEN

The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.


Asunto(s)
Analgésicos Opioides/efectos adversos , Inflamación/inducido químicamente , Neuroinmunomodulación/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
11.
J Comput Assist Tomogr ; 44(5): 687-691, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32842070

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is associated with dysfunctional cerebral autoregulation. Resistive index (RI) measured in the anterior cerebral artery on transfontanellar head ultrasound is a noninvasive measure of blood flow and may indicate autoregulation dysfunction. We tested whether RI was associated with brain injury on diffusion tensor imaging magnetic resonance imaging (MRI). MATERIALS AND METHODS: Seventy-five neonates who underwent therapeutic hypothermia for HIE were enrolled. Resistive index values were obtained from head ultrasound performed at the end of therapeutic hypothermia. Apparent diffusion coefficient scalars were measured on MRIs performed before day of life 10. RESULTS: Lower RI was associated with lower apparent diffusion coefficient in the centrum semiovale, basal ganglia, thalamus, and posterior limb of the internal capsule. Combining RI and Apgar scores improved the ability to distinguish injury severity on MRI relative to either metric alone. CONCLUSIONS: Low RI correlated with worse brain injury on diffusion tensor imaging and may serve as an early marker of brain injury in cooled HIE neonates.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Lesiones Encefálicas/epidemiología , Lesiones Encefálicas/fisiopatología , Femenino , Cabeza/diagnóstico por imagen , Humanos , Hipoxia-Isquemia Encefálica/epidemiología , Hipoxia-Isquemia Encefálica/fisiopatología , Recién Nacido , Masculino , Flujo Pulsátil/fisiología
12.
Dev Neurosci ; : 1-10, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30820019

RESUMEN

Hypoxic-ischemic encephalopathy is a common neonatal brain injury associated with significant morbidity and mortality despite the administration of therapeutic hypothermia (TH). Neonatal seizures and subsequent chronic epilepsy are frequent in this patient population and current treatments are partially effective. We used a neonatal murine hypoxia-ischemia (HI) model to test whether the severity of hippocampal and cortical injury predicts seizure susceptibility 8 days after HI and whether TH mitigates this susceptibility. HI at postnatal day 10 (P10) caused hippocampal injury not mitigated by TH in male or female pups. TH did not confer protection against flurothyl seizure susceptibility at P18 in this model. Hippocampal (R2 = 0.33, p = 0.001) and cortical (R2 = 0.33, p = 0.003) injury directly correlated with seizure susceptibility in male but not female pups. Thus, there are sex-specific consequences of neonatal HI on flurothyl seizure susceptibility in a murine neonatal HI model. Further studies are necessary to elucidate the underlying mechanisms of sex dimorphism in seizure susceptibility after neonatal HI.

13.
Dev Neurosci ; : 1-11, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30921800

RESUMEN

Preterm birth is an important cause of perinatal brain injury (PBI). Neurological injury in extremely preterm infants often begins in utero with chorioamnionitis (CHORIO) or inflammation/infection of the placenta and concomitant placental insufficiency. Studies in humans have shown dysregulated inflammatory signaling throughout the placental-fetal brain axis and altered peripheral immune responses in children born preterm with cerebral palsy (CP). We hypothesized that peripheral immune responses would be altered in our well-established rat model of CP. Specifically, we proposed that isolated peripheral blood mononuclear cells (PBMCs) would be hyperresponsive to a second hit of inflammation throughout an extended postnatal time course. Pregnant Sprague-Dawley dams underwent a laparotomy on embryonic day 18 (E18) with occlusion of the uterine arteries (for 60 min) followed by intra-amniotic injection of lipopolysaccharide (LPS, 4 µg/sac) to induce injury in utero. Shams underwent laparotomy only, with equivalent duration of anesthesia. Laparotomies were then closed, and the rat pups were born at E22. PBMCs were isolated from pups on postnatal day 7 (P7) and P21, and subsequently stimulated in vitro with LPS for 3 or 24 h. A secreted inflammatory profile analysis of conditioned media was performed using multiplex electrochemiluminescent immunoassays, and the composition of inflammatory cells was assayed with flow cytometry (FC). Results indicate that CHORIO PBMCs challenged with LPS are hyperreactive and secrete significantly more tumor necrosis factor α (TNFα) and C-X-C chemokine ligand 1 at P7. FC confirmed increased intracellular TNFα in CHORIO pups at P7 following LPS stimulation, in addition to increased numbers of CD11b/c immunopositive myeloid cells. Notably, TNFα secretion was sustained until P21, with increased interleukin 6, concomitant with increased expression of integrin ß1, suggesting both sustained peripheral immune hyperreactivity and a heightened activation state. Taken together, these data indicate that in utero injury primes the immune system and augments enhanced inflammatory signaling. The insidious effects of primed peripheral immune cells may compound PBI secondary to CHORIO and/or placental insufficiency, and thereby render the brain susceptible to future chronic neurological disease. Further understanding of inflammatory mechanisms in PBI may yield clinically important biomarkers and facilitate individualized repair strategies and treatments.

14.
NMR Biomed ; 32(7): e4103, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31038246

RESUMEN

There is increasing interest in applying physiological MRI in neonates, based on the premise that physiological parameters may provide an early biomarker of neonatal brain health and injury. Two commonly used techniques are oxygen extraction fraction (OEF) measurement using T2 -relaxation-under-spin-tagging (TRUST) MRI and cerebral blood flow measurement using phase-contrast (PC) quantitative flow MRI, which collectively provide an assessment of the brain's oxygen consumption. However, prior research has only demonstrated proof of principle of these methods in neonates, without characterization or benchmarking of the techniques. This is because available time is limited in neonatal subjects, especially when scans are performed as add-ons to clinical scans (typically less than 5 min). The work presented aims to examine the TRUST and PC MRI sequences systematically in normal neonates, through research-dedicated scan sessions. A series of characterization and optimization studies were conducted in a total of 26 radiographically normal neonates on 3 T systems. Our results show that TRUST MRI at the superior sagittal sinus (SSS) provides an OEF measurement equivalent to that at the internal jugular vein (r = 0.80, n = 10), yet with shorter scan time. Lower resolution provided better precision in the TRUST measurement (p = 0.001, n = 9). Therefore, the preferred OEF measurement is to apply TRUST MRI at the SSS using a spatial resolution of 2.5 mm. For PC MRI, our results showed that non-gated PC MRI yielded blood flow measurements comparable to those from the more time-consuming gated approach in neonates (r = 0.89, n = 7). It was also found that blood flow could be overestimated by 18% when imaging resolution is larger than 0.3 mm (n = 7). Therefore, non-gated PC MRI with a spatial resolution of 0.3 mm is recommended for neonatal applications. In conclusion, this study verifies consistency of neonatal brain oxygenation and flow measurements across acquisition schemes and points to optimal strategies in parameter selection when using these sequences.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética , Oxígeno/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Marcadores de Spin
15.
Hippocampus ; 28(8): 617-630, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29781223

RESUMEN

Delayed hippocampal injury and memory impairments follow neonatal hypoxia-ischemia (HI) despite the use of therapeutic hypothermia (TH). Death of hippocampal pyramidal cells occurs acutely after HI, but characterization of delayed cell death and injury of interneurons (INs) is unknown. We hypothesize that injury of INs after HI is: (i) asynchronous to that of pyramidal cells, (ii) independent of injury severity, and (iii) unresponsive to TH. HI was induced in C57BL6 mice at p10 with unilateral right carotid ligation and 45 min of hypoxia (FiO2 = 0.08). Mice were randomized to normothermia (36 °C, NT) or TH (31 °C) for 4 hr after HI and anesthesia-exposed shams were use as controls. Brains were studied at 24 hr (p11) or 8 days (p18) after HI. Vglut1, GAD65/67, PSD95, parvalbumin (PV) and calbindin-1 (Calb1) were measured. Cell death was assessed using cresyl violet staining and TUNEL assay. Hippocampal atrophy and astroglyosis at p18 were used to assess injury severity and to correlate with number of PV + INs. VGlut1 level decreased by 30% at 24 hr after HI, while GAD65/67 level decreased by ∼50% in forebrain 8 days after HI, a decrease localized in CA1 and CA3. PSD95 levels decreased in forebrain by 65% at 24 hr after HI and remained low 8 days after HI. PV + INs increased in numbers (per mm2 ) and branching between p11 and p18 in sham mice but not in NT and TH mice, resulting in 21-52% fewer PV + INs in injured mice at p18. Calb1 protein and mRNA were also reduced in HI injured mice at p18. At p18, somatodendritic attrition of INs was evident in all injured mice without evidence of cell death. Neither hippocampal atrophy nor astroglyosis correlated with the number of PV + INs at p18. Thus, HI exposure has long lasting effects in the hippocampus impairing the development of the GABAergic system with only partial protection by TH independent of the degree of hippocampal injury. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Hipocampo/patología , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/terapia , Interneuronas/patología , Animales , Animales Recién Nacidos , Calbindina 1/genética , Calbindina 1/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large/metabolismo , Lateralidad Funcional , Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/patología , Ratones , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Tubulina (Proteína)/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
16.
NMR Biomed ; 31(6): e3917, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601111

RESUMEN

Recent advances in diffusion MRI employ multiple diffusion encoding schemes with varying diffusion direction, weighting, and diffusion time to investigate specific microstructural properties in biological tissues. In this study, we examined time-dependent diffusion kurtosis contrast in adult mouse brains and in neonatal mouse brains after hypoxic-ischemic (HI) injury. In vivo diffusion kurtosis maps were acquired with a short diffusion time using an oscillating gradient spin echo (OGSE) sequence at 100 Hz and with a relatively long diffusion time (20 ms) using a pulsed gradient spin echo (PGSE) sequence. In the adult mouse brain, we found that the cortex and hippocampus showed larger differences between OGSE kurtosis and PGSE kurtosis than major white matter tracts. In neonatal mouse brains with unilateral HI injury, the OGSE kurtosis map overall provided stronger edema contrast than the PGSE kurtosis map, and the differences between OGSE and PGSE kurtosis measurements in the edema region reflected heterogeneity of injury. This is the first in vivo study that has demonstrated multi-direction OGSE kurtosis contrasts in the mouse brain. Comparing PGSE and OGSE kurtosis measures may provide additional information on microstructural changes after ischemic stroke.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora , Animales , Animales Recién Nacidos , Giro Dentado/diagnóstico por imagen , Giro Dentado/patología , Femenino , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/patología , Ratones , Ratones Endogámicos C57BL , Marcadores de Spin
17.
Curr Opin Pediatr ; 30(2): 199-203, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29346139

RESUMEN

PURPOSE OF REVIEW: The rapid progress in biomarker science is on the threshold of significantly changing clinical care for infants in the neonatal ICU. Infants with neonatal brain injuries will likely be the first group whose management is dramatically altered with point-of-care, rapidly available brain biomarker analysis. Providing an interim update on progress in this area is the purpose of this review. RECENT FINDINGS: Highlighted findings from the past 18 months of publications on biomarkers in neonatal brain injury include; Specific nonbrain markers of cardiac health and global asphyxia continue to provide information on brain injury after hypoxic-ischemic encephalopathy (HIE). Prediction of injury in the piglet hypoxia-ischemia model is improved with the use of a combination score of plasma metabolites. In a neonatal piglet model of perinatal hypoxia-ischemia, a systemic proinflammatory surge of cytokines has been identified after rewarming from therapeutic hypothermia. New biomarkers identified recently include osteopontin, activin A, neutrophil gelatinase-associated lipocalin, secretoneurin, Tau and neurofilament light protein. Brain-based biomarkers differ in their ability to predict short-term in-hospital outcomes and long-term neurologic deficits. SUMMARY: Neonatal brain biomarker research is currently in its very early development with major advances still to be made.


Asunto(s)
Biomarcadores/sangre , Lesiones Encefálicas/diagnóstico , Hipoxia-Isquemia Encefálica/complicaciones , Animales , Lesiones Encefálicas/sangre , Lesiones Encefálicas/etiología , Humanos , Hipoxia-Isquemia Encefálica/sangre , Recién Nacido , Pronóstico , Porcinos
18.
Dev Neurosci ; 39(1-4): 82-88, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28081533

RESUMEN

Electroencephalogram (EEG) monitoring techniques for neonatal hypoxia-ischemia (HI) are evolving over time, and the specific type of EEG utilized could influence seizure diagnosis and management. We examined whether the type of EEG performed affected seizure treatment decisions (e.g., the choice and number of antiseizure drugs [ASDs]) in therapeutic hypothermia-treated neonates with HI from 2007 to 2015 in the Johns Hopkins Hospital Neonatal Intensive Care Unit. During this period, 3 different EEG monitoring protocols were utilized: Period 1 (2007-2009), single, brief conventional EEG (1 h duration) at a variable time during therapeutic hypothermia treatment, i.e., ordered when a seizure was suspected; Period 2 (2009-2013), single, brief conventional EEG followed by amplitude-integrated EEG for the duration of therapeutic hypothermia treatment and another brief conventional EEG after rewarming; and Period 3 (2014-2015), continuous video-EEG (cEEG) for the duration of therapeutic hypothermia treatment (72 h) plus for an additional 12 h during and after rewarming. One hundred and sixty-two newborns were included in this retrospective cohort study. As a function of the type and duration of EEG monitoring, we assessed the risk (likelihood) of receiving no ASD, at least 1 ASD, or ≥2 ASDs. We found that the risk of a neonate being prescribed an ASD was 46% less during Period 3 (cEEG) than during Period 1 (brief conventional EEG only) (95% CI 6-69%, p = 0.03). After adjusting for initial EEG and MRI results, compared with Period 1, there was a 38% lower risk of receiving an ASD during Period 2 (95% CI: 9-58%, p = 0.02) and a 67% lower risk during Period 3 (95% CI: 23-86%, p = 0.01). The risk ratio of receiving ≥2 ASDs was not significantly different across the 3 periods. In conclusion, in addition to the higher sensitivity and specificity of continuous video-EEG monitoring, fewer infants are prescribed an ASD when undergoing continuous forms of EEG monitoring (aEEG or cEEG) than those receiving conventional EEG. We recommend that use of continuous video-EEG be considered whenever possible, both to treat seizures more specifically and to avoid overtreatment.


Asunto(s)
Electroencefalografía/métodos , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/terapia , Convulsiones/diagnóstico , Anticonvulsivantes/uso terapéutico , Asfixia Neonatal/complicaciones , Estudios de Cohortes , Femenino , Humanos , Hipoxia-Isquemia Encefálica/etiología , Recién Nacido , Masculino , Estudios Retrospectivos , Convulsiones/tratamiento farmacológico , Convulsiones/etiología
19.
Dev Neurosci ; 39(1-4): 257-272, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28196356

RESUMEN

BACKGROUND: Despite treatment with therapeutic hypothermia (TH), infants who survive hypoxic ischemic (HI) encephalopathy (HIE) have persistent neurological abnormalities at school age. Protection by TH against HI brain injury is variable in both humans and animal models. Our current preclinical model of hypoxia-ischemia (HI) and TH displays this variability of outcomes in neuropathological and neuroimaging end points with some sexual dimorphism. The detailed behavioral phenotype of this model is unknown. Whether there is sexual dimorphism in certain behavioral domains is also not known. Brain-derived neurotrophic factor (BDNF) supports neuronal cell survival and repair but may also be a marker of injury. Here, we characterize the behavioral deficits after HI and TH stratified by sex, as well as late changes in BDNF and its correlation with memory impairment. METHODS: HI was induced in C57BL6 mice on postnatal day 10 (p10) (modified Vannucci model). Mice were randomized to TH (31°C) or normothermia (NT, 36°C) for 4 h after HI. Controls were anesthesia-exposed, age- and sex-matched littermates. Between p16 and p39, growth was followed, and behavioral testing was performed including reflexes (air righting, forelimb grasp and negative geotaxis) and sensorimotor, learning, and memory skills (open field, balance beam, adhesive removal, Y-maze tests, and object location task [OLT]). Correlations between mature BDNF levels in the forebrain and p42 memory outcomes were studied. RESULTS: Both male and female HI mice had an approximately 8-12% lower growth rate (g/day) than shams (p ≤ 0.01) by p39. TH ameliorated this growth failure in females but not in males. In female mice, HI injury prolonged the time spent at the periphery (open field) at p36 (p = 0.004), regardless of treatment. TH prevented motor impairments in the balance beam and adhesive removal tests in male and female mice, respectively (p ≤ 0.05). Male and female HI mice visited the new arm of the Y-maze 12.5% (p = 0.05) and 10% (p = 0.03) less often than shams, respectively. Male HI mice also had 35% lower exploratory preference score than sham (p ≤ 0.001) in the OLT. TH did not prevent memory impairments found with Y-maze testing or OLT in either sex (p ≤ 0.01) at p26. At p42, BDNF levels in the forebrain ipsilateral to the HI insult were 1.7- to 2-fold higher than BDNF levels in the sham forebrain, and TH did not prevent this increase. Higher BDNF levels in the forebrain ipsilateral to the insult correlated with worse performance in the Y-maze in both sexes and in OLT in male mice (p = 0.01). CONCLUSIONS: TH provides benefit in specific domains of behavior following neonatal HI. In general, these benefits accrued to both males and females, but not in all areas. In some domains, such as memory, no benefit of TH was found. Late differences in individual BDNF levels may explain some of these findings.


Asunto(s)
Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/metabolismo , Animales , Animales Recién Nacidos , Asfixia Neonatal/complicaciones , Asfixia Neonatal/metabolismo , Femenino , Hipoxia-Isquemia Encefálica/complicaciones , Masculino , Trastornos Mentales/etiología , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales
20.
Dev Neurosci ; 39(1-4): 207-214, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28095379

RESUMEN

BACKGROUND: Despite the benefits of whole-body hypothermia therapy, many infants with hypoxic-ischemic encephalopathy (HIE) die or have significant long-term neurodevelopmental impairment. Prospectively identifying neonates at risk of poor outcome is essential but not straightforward. The cerebellum is not classically considered to be a brain region vulnerable to hypoxic-ischemic insults; recent literature suggests, however, that the cerebellum may be involved in neonatal HIE. In this study, we aimed to assess the microstructural integrity of cerebellar and linked supratentorial structures in neonates with HIE compared to neurologically healthy neonatal controls. METHODS: In this prospective cohort study, we performed a quantitative diffusion tensor imaging (DTI) analysis of the structural pathways of connectivity, which may be affected in neonatal cerebellar injury by measuring fractional anisotropy (FA) and mean diffusivity (MD) within the superior, middle, and inferior cerebellar peduncles, dentate nuclei, and thalami. All magnetic resonance imaging (MRI) studies were grouped into 4 categories of severity based on a qualitative evaluation of conventional and advanced MRI sequences. Multivariable linear regression analysis of cerebellar scalars of patients and controls was performed, controlling for gestational age, age at the time of MRI, and HIE severity. Spearman rank correlation was performed to correlate DTI scalars of the cerebellum and thalami. RESULTS: Fifty-seven (23 females, 40%) neonates with HIE and 12 (6 females, 50%) neonatal controls were included. There were 8 patients (14%) in HIE severity groups 3 and 4 (injury of the basal ganglia/thalamus and/or cortex). Based on a qualitative analysis of conventional and DTI images, no patients had evidence of cerebellar injury. No significant differences between patients and controls were found in the FA and MD scalars. However, FA values of the middle cerebellar peduncles (0.294 vs. 0.380, p < 0.001) and MD values of the superior cerebellar peduncles (0.920 vs. 1.007 × 10-3 mm/s2, p = 0.001) were significantly lower in patients with evidence of moderate or severe injury on MRI (categories 3 and 4) than in controls. In patients, cerebellar DTI scalars correlated positively with DTI scalars within the thalami. CONCLUSION: Our results suggest that infants with moderate-to-severe HIE may have occult injury of cerebellar white-matter tracts, which is not detectable by the qualitative analysis of neuroimaging data alone. Cerebellar DTI scalars correlate with thalamic measures, highlighting that cerebellar injury is unlikely to occur in isolation and may reflect the severity of HIE. The impact of concomitant cerebellar injury in HIE on long-term neurodevelopmental outcome warrants further study.


Asunto(s)
Asfixia Neonatal/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Anisotropía , Asfixia Neonatal/patología , Cerebelo/patología , Estudios de Cohortes , Imagen de Difusión Tensora , Femenino , Humanos , Hipoxia-Isquemia Encefálica/patología , Interpretación de Imagen Asistida por Computador/métodos , Recién Nacido , Masculino , Vías Nerviosas/patología , Neuroimagen/métodos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA