RESUMEN
Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.
Asunto(s)
Replicación del ADN/genética , Genoma/genética , Heterocromatina/genética , Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Línea Celular Tumoral , Centrómero/genética , Cromatina/genética , ADN Helicasas/genética , G-Cuádruplex , Células HeLa , Humanos , Fase S/genéticaRESUMEN
In BRAFV600E melanoma cells, a global metabolomic analysis discloses a decrease in nicotinamide adenine dinucleotide (NAD+) levels upon PLX4032 treatment that is conveyed by a STAT5 inhibition and a transcriptional regulation of the nicotinamide phosphoribosyltransferase (NAMPT) gene. NAMPT inhibition decreases melanoma cell proliferation both in vitro and in vivo, while forced NAMPT expression renders melanoma cells resistant to PLX4032. NAMPT expression induces transcriptomic and epigenetic reshufflings that steer melanoma cells toward an invasive phenotype associated with resistance to targeted therapies and immunotherapies. Therefore, NAMPT, the key enzyme in the NAD+ salvage pathway, appears as a rational target in targeted therapy-resistant melanoma cells and a key player in phenotypic plasticity of melanoma cells.
Asunto(s)
Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , Melanoma/enzimología , Melanoma/genética , Invasividad Neoplásica/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Citocinas/genética , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/farmacología , Melanoma/fisiopatología , Metaboloma , Ratones , Ratones Desnudos , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/genética , Sulfonamidas/farmacología , Activación Transcripcional/efectos de los fármacos , VemurafenibRESUMEN
Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.
Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Viroterapia Oncolítica/métodos , Factores de Transcripción/metabolismo , Transcriptoma , Virus Vaccinia/genética , Vaccinia/metabolismo , Replicación Viral , Animales , Biología Computacional , Perros , Femenino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/terapia , Neoplasias Mamarias Animales/virología , Análisis de la Célula Individual , Factores de Transcripción/genética , Vaccinia/genética , Vaccinia/virologíaRESUMEN
Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.
Asunto(s)
Carcinogénesis/patología , Citotoxicidad Inmunológica , Factores Inmunológicos/metabolismo , Integrina beta1/metabolismo , Células Asesinas Naturales/inmunología , Melanoma/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular , Melanoma/patología , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/metabolismoRESUMEN
The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased ß-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-ß-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-ß-catenin signaling axis controls pneumocyte maturation.
Asunto(s)
Células Epiteliales Alveolares/citología , Linaje de la Célula , Pulmón/crecimiento & desarrollo , MicroARNs/genética , Organogénesis , Mucosa Respiratoria/citología , Células Epiteliales Alveolares/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Mucosa Respiratoria/fisiologíaRESUMEN
Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.
Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Caveolina 1/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , MicroARNs/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Vía de Señalización WntRESUMEN
Extracellular vesicles (EVs) have been shown to play an important role in intercellular communication as carriers of DNA, RNA and proteins. While the intercellular transfer of miRNA through EVs has been extensively studied, the stability of extracellular miRNA (ex-miRNA) once engulfed by a recipient cell remains to be determined. Here, we identify the ex-miRNA-directed phenotype to be transient due to the rapid decay of ex-miRNA. We demonstrate that the ex-miR-223-3p transferred from polymorphonuclear leukocytes to cancer cells were functional, as demonstrated by the decreased expression of its target FOXO1 and the occurrence of epithelial-mesenchymal transition reprogramming. We showed that the engulfed ex-miRNA, unlike endogenous miRNA, was unstable, enabling dynamic regulation and a return to a non-invasive phenotype within 8 h. This transient phenotype could be modulated by targeting XRN1/PACMAN exonuclease. Indeed, its silencing was associated with slower decay of ex-miR-223-3p and subsequently prolonged the invasive properties. In conclusion, we showed that the 'steady step' level of engulfed miRNA and its subsequent activity was dependent on the presence of a donor cell in the surroundings to constantly fuel the recipient cell with ex-miRNAs and of XRN1 exonuclease, which is involved in the decay of these imported miRNA.
Asunto(s)
Transición Epitelial-Mesenquimal/genética , Exorribonucleasas/metabolismo , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/genética , Estabilidad del ARN , Línea Celular Tumoral , Exosomas/metabolismo , Humanos , Invasividad Neoplásica , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Neutrófilos/metabolismoRESUMEN
Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.
Asunto(s)
Carcinoma de Células Escamosas/genética , Diferenciación Celular/genética , Regulación hacia Abajo/genética , ARN Largo no Codificante/genética , Neoplasias Cutáneas/genética , Animales , Carcinoma de Células Escamosas/patología , Femenino , Ratones , Ratones Endogámicos , Neoplasias Cutáneas/patología , Células Tumorales CultivadasRESUMEN
Root-knot nematodes, Meloidogyne spp., are obligate endoparasites that maintain a biotrophic relationship with their hosts. They infect roots as microscopic vermiform second-stage juveniles, and establish specialized feeding structures called 'giant-cells', from which they withdraw water and nutrients. The nematode effector proteins secreted in planta are key elements in the molecular dialogue of parasitism. Here, we compared Illumina RNA-seq transcriptomes for M. incognita obtained at various points in the lifecycle, and identified 31 genes more strongly expressed in parasitic stages than in preparasitic juveniles. We then selected candidate effectors for functional characterization. Quantitative real-time PCR and in situ hybridizations showed that the validated differentially expressed genes are predominantly specifically expressed in oesophageal glands of the nematode. We also soaked the nematodes in siRNA to silence these genes and to determine their role in pathogenicity. The silencing of the dorsal gland specific-Minc18876 and its paralogues resulted in a significant, reproducible decrease in the number of mature females with egg masses, demonstrating a potentially important role for the small glycine- and cysteine-rich effector MiSGCR1 in early stages of plant-nematode interaction. Finally, we report that MiSGCR1 suppresses plant cell death induced by bacterial or oomycete triggers of plant defense.
Asunto(s)
Interacciones Huésped-Parásitos , Nicotiana/parasitología , Parásitos/fisiología , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Secuencia de Aminoácidos , Animales , Muerte Celular , Esófago/metabolismo , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/genética , Masculino , Especificidad de Órganos/genética , Parásitos/genética , Células Vegetales/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Pseudomonas syringae/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Nicotiana/microbiología , Transcriptoma/genética , Tylenchoidea/genéticaRESUMEN
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, ßIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.
Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Forma de la Célula/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Cinética , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genéticaRESUMEN
Although Tacrolimus is an immunosuppressive drug widely used in renal transplantation, its chronic use paradoxically induces nephrotoxic effects, in particular renal fibrosis, which is responsible for chronic allograft dysfunction and represents a major prognostic factor of allograft survival. As molecular pathways and mechanisms involved in Tacrolimus-induced fibrogenic response are poorly elucidated, we assessed whether miRNAs are involved in the nephrotoxic effects mediated by Tacrolimus. Treatment of CD-1 mice with Tacrolimus (1 mg/kg/d for 28 days) resulted in kidney injury and was associated with alteration of a gene expression signature associated with cellular stress, fibrosis and inflammation. Tacrolimus also affected renal miRNA expression, including miRNAs previously involved in fibrotic and inflammatory processes as "fibromirs" such as miR-21-5p, miR-199a-5p and miR-214-3p. In agreement with in vivo data, Renal Proximal Tubular Epithelial cells exposed to Tacrolimus (25 and 50 µM) showed upregulation of miR-21-5p and the concomitant induction of epithelial phenotypic changes, inflammation and oxidative stress. In conclusion, this study suggests for the first time that miRNAs, especially fibromiRs, participate to Tacrolimus-induced nephrotoxic effects. Therefore, targeting miRNAs may be a new therapeutic option to counteract Tacrolimus deleterious effects on kidney.
Asunto(s)
Inmunosupresores/toxicidad , Riñón/efectos de los fármacos , MicroARNs/metabolismo , Tacrolimus/toxicidad , Animales , Células Cultivadas , Fibrosis , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Transcriptoma/efectos de los fármacos , Regulación hacia ArribaRESUMEN
Root-knot nematodes are globally the most aggressive and damaging plant-parasitic nematodes. Chemical nematicides have so far constituted the most efficient control measures against these agricultural pests. Because of their toxicity for the environment and danger for human health, these nematicides have now been banned from use. Consequently, new and more specific control means, safe for the environment and human health, are urgently needed to avoid worldwide proliferation of these devastating plant-parasites. Mining the genomes of root-knot nematodes through an evolutionary and comparative genomics approach, we identified and analyzed 15,952 nematode genes conserved in genomes of plant-damaging species but absent from non target genomes of chordates, plants, annelids, insect pollinators and mollusks. Functional annotation of the corresponding proteins revealed a relative abundance of putative transcription factors in this parasite-specific set compared to whole proteomes of root-knot nematodes. This may point to important and specific regulators of genes involved in parasitism. Because these nematodes are known to secrete effector proteins in planta, essential for parasitism, we searched and identified 993 such effector-like proteins absent from non-target species. Aiming at identifying novel targets for the development of future control methods, we biologically tested the effect of inactivation of the corresponding genes through RNA interference. A total of 15 novel effector-like proteins and one putative transcription factor compatible with the design of siRNAs were present as non-redundant genes and had transcriptional support in the model root-knot nematode Meloidogyne incognita. Infestation assays with siRNA-treated M. incognita on tomato plants showed significant and reproducible reduction of the infestation for 12 of the 16 tested genes compared to control nematodes. These 12 novel genes, showing efficient reduction of parasitism when silenced, constitute promising targets for the development of more specific and safer control means.
Asunto(s)
Genes de Helminto/fisiología , Enfermedades de las Plantas/parasitología , Tylenchoidea/genética , Animales , Estudio de Asociación del Genoma Completo , Humanos , Interferencia de ARN , Tylenchoidea/metabolismoRESUMEN
Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.
Asunto(s)
Antineoplásicos , Aspartatoamoníaco Ligasa , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animales , Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Asparagina/metabolismo , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/metabolismo , Línea Celular Tumoral , Glutaminasa/uso terapéutico , Linfoma de Células B/tratamiento farmacológico , Ratones , Microambiente TumoralRESUMEN
Pigmentation of the human skin is a complex process regulated by many genes. However, only a few have a profound impact on melanogenesis. Transcriptome analysis of pigmented skin compared with analysis of vitiligo skin devoid of melanocytes allowed us to unravel CLEC12B as a melanocytic gene. We showed that CLEC12B, a C-type lectin receptor, is highly expressed in melanocytes and that its expression is decreased in dark skin compared with that in white skin. CLEC12B directly recruits and activates SHP1 and SHP2 through its immunoreceptor tyrosine-based inhibitory motif domain and promotes CRE-binding protein degradation, leading to the downregulation of the downstream MITF pathway. CLEC12B ultimately controls melanin production and pigmentation in vitro and in a model of reconstructed human epidermis. The identification of CLEC12B in melanocytes shows that C-type lectin receptors exert function beyond immunity and inflammation. It also provides insights into the understanding of melanocyte biology and regulation of melanogenesis.
Asunto(s)
Lectinas Tipo C , Melanocitos , Receptores Mitogénicos , Pigmentación de la Piel , Epidermis/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Receptores Mitogénicos/metabolismo , Piel/metabolismo , Pigmentación de la Piel/genéticaRESUMEN
Immune checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, up to 60% of treated patients do not respond to ICI and/or develop immune-related adverse events (irAEs). Currently, robust and reliable biomarker to predict response and/or occurrence of irAEs to ICI are missing. Herein, we wanted to explore whether germline variants (SNPs) could predict the clinical outcomes of melanoma patients treated with ICIs. We performed a whole exome sequencing using gDNA isolated from blood, from a discovery cohort of 57 patients with metastatic melanoma. The top associations were then tested in a validation cohort of 57 patients. Our work suggests that individual germline genetic variants have no or weak impact on the response to ICIs. Only, variants in IL1RL1 have a significant impact in treatment response. The role of IL1RL1 in the immune response against melanoma and as a theranostic marker warrants further investigations.
Asunto(s)
Exones , Mutación de Línea Germinal , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Melanoma , Proteínas de Neoplasias/genética , Polimorfismo de Nucleótido Simple , Receptores Tipo I de Interleucina-1/genética , Adulto , Femenino , Humanos , Masculino , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia , Secuenciación del ExomaRESUMEN
Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFß1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFß1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFß1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR ¼ miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFß axis, opening new avenues for the treatment of DMD.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/genética , MicroARNs/genética , Distrofia Muscular de Duchenne/genética , Miofibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Células Madre/metabolismo , Factor de Crecimiento Transformador beta1/genética , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/genética , Adolescente , Adulto , Secuencia de Bases , Diferenciación Celular , Niño , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibrosis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miofibroblastos/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Células Madre/patología , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Ubiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells.
Asunto(s)
Reprogramación Celular/genética , Epigénesis Genética/genética , Melanoma/genética , Proteínas Musculares/metabolismo , Proteómica/métodos , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanoma/patología , Ratones , Ratones Desnudos , Transfección , Ubiquitinación , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.